Skip to main content
Log in

Compression of the outlets of the leptomeningeal veins —the cause of intracranial plateau waves

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The hypothesis is developed that plateau waves (PW) are caused by an abrupt elevation of postcapillary flow resistance induced by compression of the outlets of the leptomeningeal veins. It is shown by means of a physical model that the main prerequisite for venous outlet compression consists in an elevation of the outflow resistance of the cerebrospinal fluid. Resolution of PW is demonstrated to be brought about by expulsion of fluid from the cranial vault during the plateau phase, thus allowing the outlets of the leptomeningeal veins to re-open. Brain shifting seems also to participate in this redistribution of the intracranial space in favour of the vasculature. It is further proven that PW may occur in rats with chronically or acutely increased CSF outflow resistance. PW triggering was investigated in these animals. All phenomena known to be related to PW are explained by the concept developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, H., Laas, R., Plateau waves; production in the rat and simulation by means of a mechanical model. In: Intracranial pressure IV (Shulman, K., Marmarou, A., Miller, J. D.,et al., eds.), pp. 525–529. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  2. Brierley, J. B., Field, E. J., The connexions of the spinal subarachnoid space with the lymphatic system. J. Anat. (London)82 (1948), 153–166.

    Google Scholar 

  3. Brower, J. W., Noordergraaf, A., Pressure—flow characteristics of collapsible tubes: a reconciliation of seemingly contradictory results. Ann. Biomed. Engin.1 (1973), 333–335.

    Google Scholar 

  4. Cooper, R., Hulme, A., The interdependence of cerebrovascular autoregulation and intracranial pressure. In: Intracranial pressure (Brock, M., Dietz, H., eds.), pp. 239–243. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  5. Davson, H., Physiology of the cerebrospinal fluid. London: Churchill. 1967.

    Google Scholar 

  6. Gomez, D. G., Potts, D. G., Effects of pressure on the arachnoid villi. In: The ocular and cerebrospinal fluids (Bito, L. Z., Davson, H., Fenstermacher, J. D., eds.), pp. 117–126. London-New York-San Francisco: Academic Press Inc. 1977.

    Google Scholar 

  7. Greenfield, J. C., Tindall, G. T., Effect of acute increase in intracranial pressure on blood flow in the internal carotid artery of man. J. Clin. Invest.44 (1965), 1343–1351.

    PubMed  Google Scholar 

  8. Grubb, R. L., Raichle, M. E., Phelps, M. E.,et al., Effects of increased intracranial pressure on cerebral blood volume, blood flow, and oxygen utilization in monkeys. J. Neurosurg.43 (1975), 385–398.

    PubMed  Google Scholar 

  9. Hacker, H., Kühner, G., Die Brückenvenen. Radiologe12 (1972), 45–48.

    PubMed  Google Scholar 

  10. Häggendahl, E., Löfgren, J., Nilsson, N. J.,et al., Effects of varied cerebrospinal fluid pressure on cerebral blood flow in dogs. Acta Physiol. Scand.79 (1970), 262–271.

    PubMed  Google Scholar 

  11. Hochwald, G. M., Marlin, A. E., Wald, A., Increases in ICP and development of plateau waves in decompensated hydrocephalic cats. A new model. In: Intracranial pressure III (Beks, J. W. F., Bosch, D. A., Brock, M., eds.), pp. 37–42. Berlin-Heidelberg-New York: Springer. 1976.

    Google Scholar 

  12. Hulme, A., Cooper, R., The effects of head position and jugular vein compression (JVC) on intracranial pressure (ICP). A clinical study. In: Intracranial pressure III (Beks, J. W. F., Bosch, D. A., Brock, M., eds.), pp. 259–263. Berlin-Heidelberg-New York: Springer. 1976.

    Google Scholar 

  13. Ingvar, D. H., Lundberg, N., Paroxysmal symptoms in intracranial hypertension, studied with ventricular fluid pressure recording and EEG. Brain84 (1961), 446–459.

    Google Scholar 

  14. Kety, S. S., Shenkin, H. A., Schmidt, C. F., The effects of increased intracranial pressure on the cerebral circulatory functions in man. J. Clin. Invest.27 (1948) 493–498.

    Google Scholar 

  15. Kjällquist, A., Lundberg, N., Pontén, U., Respiration and cardiovascular changes during rapid spontaneous variations of ventricular fluid pressure in patients with intracranial hypertension. Acta Neurol. Scand.40 (1964), 292–317.

    Google Scholar 

  16. Kontos, H. A., Wei, E. P., Navari, R. M.,et al., Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Amer. J. Physiol.234 (1978), H371-H383.

    PubMed  Google Scholar 

  17. Kuchiwaki, H., Furuse, M., Nakaya, T.,et al., Intracranial dynamics associated with experimentally induced pressure waves. In: Intracranial pressure IV (Shulman, K., Marmarou, A., Miller, J. D.,et al., eds.), pp. 147–149. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  18. Langfitt, T. W., Pathophysiology of increased ICP. In: Intracranial pressure (Brock, M., Dietz, H., eds.), pp. 361–364. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  19. Langfitt, T. W., Kassell, N. F., Weinstein, J. D., Cerebral blood flow with intracranial hypertension. Neurology15 (1965), 761–773.

    PubMed  Google Scholar 

  20. Lundberg, N., Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiat. Neurol. Scand.36 (1960), Suppl. 149.

    Google Scholar 

  21. Lundberg, N., Cronquist, S., Kjällquist, A., Clinical investigations on interelations between intracranial pressure and intracranial hemodynamics. Progr. Brain Res.30 (1968), 69–75.

    Google Scholar 

  22. Lundberg, N., Kjällquist, A., Kullberg, G.,et al., Nonoperative management of intracranial hypertension. In: Advances and technical standards in neurosurgery, Vol. 1 (Krayenbühl, H.,et al., eds.), pp. 3–27. Wien-New York: Springer. 1974.

    Google Scholar 

  23. Matsuda, M., Yonada, S., Handa, H.,et al., Cerebral hemodynamic changes during plateau waves in brain tumor patients. J. Neurosurg.50 (1979), 483–488.

    PubMed  Google Scholar 

  24. Milhorat, T. H., Hydrocephalus and the cerebrospinal fluid. Baltimore: Williams & Wilkins Publ. 1972.

    Google Scholar 

  25. Miller, J. D., Stanek, A. E., Langfitt, T. W., Cerebral blood flow regulation during experimental brain compression. J. Neurosurg.39 (1973), 186–196.

    PubMed  Google Scholar 

  26. Morawetz, R. B., Mitchem, H. L., Strong, E.,et al., Simultaneous subacute measurement of ICP and brain O2 availability. In: Intracranial pressure IV (Shulman, K., Marmarou, A., Miller, J. D.,et al., eds.), pp. 142–146. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  27. Nakagawa, Y., Tsuru, M., Yada, K., Site and mechanism for compression of the venous system during experimental intracranial hypertension. J. Neurosurg.41 (1974), 427–434.

    PubMed  Google Scholar 

  28. Nornes, H., Magnaes, B., Aaslid, R., Observations in intracranial pressure plateau waves. In: Intracranial pressure II (Lundberg, N., Pontén, U., Brock, M., eds.), pp. 421–426. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  29. Osterholm, J. L., Reaction of the cerebral venous sinus system to acute intracranial hypertension. J. Neurosurg.32 (1970), 654–659.

    PubMed  Google Scholar 

  30. Risberg, J., Lundberg, N., Ingvar, D. H., Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). J. Neurosurg.31 (1969), 303–310.

    PubMed  Google Scholar 

  31. Shulman, K., Small artery and vein pressures in the subarachnoid space of the dog. J. Surg. Res.5 (1965), 56–61.

    Google Scholar 

  32. Shulman, K., Verdier, G. R., Cerebral vascular resistance changes in response to cerebrospinal fluid pressure. Amer. J. Physiol.213 (1967), 1084–1088.

    PubMed  Google Scholar 

  33. Tripathi, R. C., Tripathi, B. J., Vacuolar transcellular channels as the outflow pathway of cerebrospinal fluid. J. Physiol.239 (1974), 195–206.

    PubMed  Google Scholar 

  34. Troupp, H., de Rougemont, J., Chairmen's comment. In: Intracranial pressure II (Lundberg, N., Pontén, U., Brock, M., eds.), pp. 419–420. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  35. Wald, A., Hochwald, G. M., An animal model for the production of intracranial pressure plateau waves. Ann. Neurol.1 (1977), 486–488.

    PubMed  Google Scholar 

  36. Wolff, H. G., Forbes, H. S., The cerebral circulation. V. Observations of the pial circulation during changes in intracranial pressure. Arch. Neurol. Psychiat. (Chicago)20 (1928), 1035–1047.

    Google Scholar 

  37. Wright, R. D., Experimental observations on increased intracranial pressure. Aust. N. Z. Surg.7 (1938), 215–235.

    Google Scholar 

  38. Yada, K., Nakagawa, Y., Tsuru, M., Site and mechanism of vascular stenosis under increased intracranial pressure—intracranial venous pressure regulation mechanism. In: Intracranial pressure II (Lundberg, N., Pontén, U., Brock, M., eds.), pp. 427–432. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laas, R., Arnold, H. Compression of the outlets of the leptomeningeal veins —the cause of intracranial plateau waves. Acta neurochir 58, 187–201 (1981). https://doi.org/10.1007/BF01407125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01407125

Keywords

Navigation