Skip to main content
Log in

On values of zeta functions and ℓ-adic Euler characteristics

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Bourbaki, N.: Algèbre Commutative, Ch. VII. Paris: Hermann, 1965

    Google Scholar 

  2. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Math. Series19. Princeton Univ. Press 1956

  3. Coates, J.:p-adicL-functions and Iwasawa's Theory. In: Algebraic number fields:L-functions and Galois properties. Proc. Sympos., Univ. Durham, Durham, 1975, pp. 269–353. London-New York-San Francisco: Academic Press 1977

    Google Scholar 

  4. Coates, J., Lichtenbaum, S.: On ℓ-adic zeta functions. Ann. of Math.98, 498–550 (1973)

    Google Scholar 

  5. Iwasawa, K.: Onp-adicL-functions. Ann. of Math.89, 198–205 (1969)

    Google Scholar 

  6. Iwasawa, K.: On the μ-invariants of ℤ-extensions. In: Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y, Akizuki, pp. 1–11, Kinokuniya, Tokyo 1973

    Google Scholar 

  7. Iwasawa, K.: On ℤ-extensions of algebraic number fields. Ann. of Math.98, 246–326 (1973)

    Google Scholar 

  8. Kubota, T., Leopoldt, H.W.: Einep-adische Theorie der Zetawerte. J. Reine Angew. Math.214/215, 328–339 (1964)

    Google Scholar 

  9. Lichtenbaum, S.: On the values of zeta andL-functions I. Ann. of Math.96, 338–360 (1972)

    Google Scholar 

  10. Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. 4e série6, 521–556 (1973)

    Google Scholar 

  11. Neukirch, J.: On ℓ-adische Kohomologie. (Unpublished lecture notes)

  12. Serre, J.P.: Cohomologie galoisienne. Lect. Notes in Math.5 Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  13. Serre, J.P.: Formes modulaires et fonctions zêtap-adiques, in Modular Functions of One Variable III. Lect. Notes in Math.350. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  14. SGA 4: Théorie des topos et cohomologie étale des schémas. Tome 3. Lect. Notes in Math.305. Berlin-Heidelberg-New York: Springer 1973

  15. SGA 5: Cohomologie ℓ-adique et fonctions L. Lect. Notes in Math.589. Berlin-Heidelberg-New York: Springer 1977

  16. Siegel, C.L.: Über die analytische Theorie der quadratischen Formen III. Ann. of Math.38, 212–291 (1937) (Gesam. Abh. I, pp. 469–548)

    Google Scholar 

  17. Tamme, G.: Einführung in die étale Kohomologie. Math. Inst. der Univ. Göttingen 1976

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, P., Neukirch, J. On values of zeta functions and ℓ-adic Euler characteristics. Invent Math 50, 35–64 (1978). https://doi.org/10.1007/BF01406467

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01406467

Keywords

Navigation