Skip to main content
Log in

Direct gene transfer inPetunia hybrida electroporated protoplasts: Evidence for co-transformation with a phosphoenolpyruvate carboxylase cDNA from sorghum leaf

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Co-transformation experiments were carried out onPetunia hybrida protoplasts. The method used was electroporation with two plasmids: one confering kanamycin resistance, and the other harbouring a phosphoenolpyruvate carboxylase (PEPC) cDNA fromSorghum vulgare leaves. Southern blot analysis of the selected lines demonstrated a high co-transformation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEPC:

phosphoenolpyruvate carboxylase

NPT:

neomycin phosphotransferase

ATF:

absolute transformation frequency

PEG:

polyethylenglycol

BA:

6-benzyl-aminopurine

IAA:

3-indoleacetic acid

2,4-D:

2,4-dichlorophenoxyacetic acid

References

  • Bergounioux-Bunisset C, Perennes C (1980) Transfert de facteurs cytoplasmiques de la fertilité mâle entre 2 lignées dePetunia hybrida par fusion somatique. Plant Sci Lett 19: 143–149

    Google Scholar 

  • Bergounioux C, Perennes C, Miege C, Gadal P (1986) The effect of male sterility on protoplast division inPetunia hybrida. Cell cycle comparison by flow cytometry. Protoplasma 130: 138–144

    Google Scholar 

  • Czernilofsky AP, Hain R, Baker B, Wirtz U (1986 a) Studies of the structure and functional organization of foreign DNA integrated into the genome ofNicotiana tabacum. DNA 5: 473–482

    PubMed  Google Scholar 

  • —,Herrera-Estrella L, Lörz H, Goyvaerts E, Baker BJ, Schell J (1986 b) Fate of selectable marker DNA integrated into the genome ofNicotiana tabacum. DNA 5: 101–113

    PubMed  Google Scholar 

  • Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation ofPetunia protoplasts by isolatedAgrobacterium plamids. Plant Sci Lett 18: 307–313

    Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793

    PubMed  Google Scholar 

  • Gould AR, Daines RJ (1984) Plant protoplasts and the cell cycle. In:Constabel F, Fowke B (eds) Plant protoplasts. CRC Press, Boca Raton, pp 1–23

    Google Scholar 

  • Heller R (1953) Recherche sur la nutrition minérale des tissus végétaux cultivésin vitro. Ann Sc Bot Biol Vég 14: 1–223

    Google Scholar 

  • Jongsma M, Koorneef M, Zabel P, Hille J (1987) Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Mol Biol 8: 383–394

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982)In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74

    Google Scholar 

  • Morel G, Martin C (1963) Guérison de pommes-de-terre atteintes de maladies à virus. C R Acad Agri France 41: 472–475

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in analysis of transformation conditions: I. Setting up a simple method for direct gene transfer in protoplasts. Plant Mol Biol 8: 363–373

    Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3: 2717–2722

    Google Scholar 

  • Peerbolte R, Krens FA, Mans RMW, Floor M, Hoge JHC, Wullems GJ, Schilperoort RA (1985) Transformation of plant protoplasts with DNA: cotransformation of non-selected calf thymus carrier DNA and meiotic segregation of transformating DNA sequences. Plant Mol Biol 5: 235–246

    Google Scholar 

  • Pietrzak M, Shillito RD, Hohn T, Potrykus I (1986) Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res 14: 5857–5868

    PubMed  Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188

    Google Scholar 

  • —,Shillito RD, Saul MW, Paszkowski J (1985) Direct gene transfer; state of the art and future potential. Plant Mol Biol Rep 3: 117–128

    Google Scholar 

  • Ratet P, Richaud F (1986) Construction and uses of a new transposable element whose insertion is able to produce gene fusions with the neomycin-phosphotransferase-coding region of Tn903. Gene 42: 185–192

    PubMed  Google Scholar 

  • Riggs CD, Bates GW (1986) Stable transformation of tobacco by electroporation: evidence for plasmid concatenation. Proc Natl Acad Sci USA 83: 5602–5606

    PubMed  Google Scholar 

  • Scangos G, Ruddle F (1981) Mechanisms and applications of DNA-mediated gene transfer in mammalian cells: a review. Gene 14: 1–10

    PubMed  Google Scholar 

  • Schocher RJ, Shillito RD, Saul MW, Paszkowski J, Potrykus I (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio Technology 4: 1093–1096

    Google Scholar 

  • Shillito RD, Paszkowski J, Potrykus I (1983) Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep 2: 244–247

    Google Scholar 

  • —,Saul MW, Paszkowski J, Müller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Bio Technology 3: 1099–1103

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    PubMed  Google Scholar 

  • Tagu D, Bergounioux C, Perennes C, Brown S, Müller P, Gadal P (1987) Analysis by flow cytometry of the primary events ofPetunia hybrida protoplast transformation. Plant Sci 51: 215–223

    Google Scholar 

  • Teissié J (1986) Electropulsation de cultures cellulaires. Biofutur 4: 64–67

    Google Scholar 

  • Uchimiya H, Hirochika H, Hashimoto H, Hara A, Masuda T, Kasumimoto T, Harada H, Ikeda JE, Yoshioka M (1986) Co-expression and inheritance of foreign genes in transformants obtained by direct DNA transformation of tobacco protoplasts. Mol Gen Genet 205: 1–8

    Google Scholar 

  • Wirtz U, Schell J, Czernilofsky AP (1987) Recombination of selectable marker DNA inNicotiana tabacum. DNA 6: 245–253

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagu, D., Bergounioux, C., Cretin, C. et al. Direct gene transfer inPetunia hybrida electroporated protoplasts: Evidence for co-transformation with a phosphoenolpyruvate carboxylase cDNA from sorghum leaf. Protoplasma 146, 101–105 (1988). https://doi.org/10.1007/BF01405918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01405918

Keywords

Navigation