Advertisement

Inventiones mathematicae

, Volume 88, Issue 1, pp 125–151 | Cite as

Rigidity and the lower bound theorem 1

  • Gil Kalai
Article

Summary

For an arbitrary triangulated (d-1)-manifold without boundaryC withf0 vertices andf1 edges, define\(\gamma (C) = f_1 - df_0 + \left( {\begin{array}{*{20}c} {d + 1} \\ 2 \\ \end{array} } \right)\). Barnette proved that γ(C)≧0. We use the rigidity theory of frameworks and, in particular, results related to Cauchy's rigidity theorem for polytopes, to give another proof for this result. We prove that ford≧4, if γ(C)=0 thenC is a triangulated sphere and is isomorphic to the boundary complex of a stacked polytope. Other results: (a) We prove a lower bound, conjectured by Björner, for the number ofk-faces of a triangulated (d-1)-manifold with specified numbers of interior vertices and boundary vertices. (b) IfC is a simply connected triangulatedd-manifold,d≧4, and γ(lk(v, C))=0 for every vertexv ofC, then γ(C)=0. (lk(v,C) is the link ofv inC.) (c) LetC be a triangulatedd-manifold,d≧3. Then Ske11(Δd+2) can be embedded in skel1 (C) iff γ(C)>0. (Δ d is thed-dimensional simplex.) (d) IfP is a 2-simpliciald-polytope then\(f_1 (P) \geqq df_0 (P) - \left( {\begin{array}{*{20}c} {d + 1} \\ 2 \\ \end{array} } \right)\). Related problems concerning pseudomanifolds, manifolds with boundary and polyhedral manifolds are discussed.

Keywords

Manifold Related Problem Boundary Complex Boundary Vertex Interior Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandrov, A.D.: Convex polyhedra. Moscow, 1950 (Russian); German transl., Konvexe Polyeder. Berlin: Akademie-Verlag 1958Google Scholar
  2. 2.
    Altshuler, A.: 3-pseudomanifolds with preassigned links. Trans. Am. Math. Soc.241, 213–237 (1978)Google Scholar
  3. 3.
    Altshuler, A., Perles, M.A.: Quotient polytopes of cyclic polytopes, Part I: Structure and characterization. Isr. J. Math.36, 97–125 (1980)Google Scholar
  4. 4.
    Altshuler, A., Steinberg, L.: Neighborly 4-polytopes with 9 vertices. J. Comb. Theory, Ser. A15, 270–287 (1973)Google Scholar
  5. 5.
    Asimow, L., Roth, B.: The rigidity of graphs I. Trans. Am. Math. Soc.245, 279–289 (1978)Google Scholar
  6. 6.
    Asimow, L., Roth, B.: The rigidity of graphs II. J. Math. Anal. Appl.68, 171–190 (1979)Google Scholar
  7. 7.
    Balinski, M.: On the graph structure of convex polyhedra inn-space. Pac. J. Math.11, 431–434 (1961)Google Scholar
  8. 8.
    Banchoff, T.F.: Tightly embedded 2-dimensional polyhedral manifolds. Am. J. Math.87, 462–472 (1975)Google Scholar
  9. 9.
    Barnette, D.: The minimum number of vertices of a simple polytope. Isr. J. Math.10, 121–125 (1971)Google Scholar
  10. 10.
    Barnette, D.: A proof of the lower bound conjecture for convex polytopes. Pac. J. Math.46, 349–354 (1973)Google Scholar
  11. 11.
    Barnette, D.: Graph theorems for manifolds. Isr. J. Math.16, 62–72 (1973)Google Scholar
  12. 12.
    Barnette, D.: Generalized combinatorial cells and facet splitting. Pac. J. Math.46, 349–354 (1973)Google Scholar
  13. 13.
    Barnette, D.: Polyhedral maps on 2-manifolds. In: Convexity and related combinatorial geometry. Kay, D.C., Breen, M. (eds.), pp. 7–19. New York: Marcel Dekker Inc. 1982Google Scholar
  14. 14.
    Barnette, D., Grünbaum, B.: On Steinitz's theorem concerning convex polytopes and on some properties of planar graphs. The many facets of graph theory. Lecture Notes in Math. vol. 110, pp. 27–40. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  15. 15.
    Billera, L.J., Lee, C.W.: A proof of the sufficiency of McMullen's conditions forf-vectors of simplicial polytopes. J. Comb. Theory, Ser. A31, 237–255 (1981)Google Scholar
  16. 16.
    Billera, L.J., Lee, C.W.: The number of faces of polytopes pairs and unbounded polyhedra. Eur. J. Comb.2, 307–322 (1981)Google Scholar
  17. 17.
    Björner, A.: The minimum number of faces of a simple polyhedron. Eur. J. Comb.1, 27–31 (1980)Google Scholar
  18. 18.
    Björner, A., Kalai, G.: An extended Euler-Poincaré formula. (Preprint)Google Scholar
  19. 19.
    Beineke, L.W., Pippert, R.E.: Properties and characterizations ofk-trees. Mathematica18, 141–151 (1971)Google Scholar
  20. 20.
    Bricard, R.: Mémoire sur la théorie de l'octa dre articulé. J. Math. Pures Appl., IX. Ser. 3, 113–138 (1897)Google Scholar
  21. 21.
    Brönsted, A.: An introduction to convex polytopes. Graduate text in Mathematics, vol. 90. Berlin-Heidelberg-New York: Springer 1983Google Scholar
  22. 22.
    Cauchy, L.: Sur les polygones et les polyèdres, Second Memoire, I. Ecole Polytechnique9 (1813), 87 (=Oeuvres complètes d'Augustin Cauchy, 2nd sér., Tome 1, 1905, pp. 26–38)Google Scholar
  23. 23.
    Cooper, D., Thurston, W.P.: Triangulating 3-manifolds using 5 vertex link types. PreprintGoogle Scholar
  24. 24.
    Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math., Inst. Hautes Étud. Sci.47, 333–338 (1978)Google Scholar
  25. 25.
    Connelly, R.: Conjectures and open problems in rigidity. Proc. International Congress of Math., Helsinki, 1978Google Scholar
  26. 26.
    Connelly, R.: The rigidity of certain cabled frameworks and the second order rigidity of arbitrarily triangulated convex surfaces. Adv. Math.37, 272–299 (1980)Google Scholar
  27. 27.
    Dirac, G.A.: Homomorphism theorems for graphs. Math. Ann.153, 69–80 (1964)Google Scholar
  28. 28.
    Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric topology. Lecture Notes in Math., vol. 438, pp. 225–239. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  29. 29.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19, 135–162 (1980)Google Scholar
  30. 30.
    Graver, J.: A combinatorial approach to infinitesimal rigidity. (Preprint)Google Scholar
  31. 31.
    Grünbaum, B.: Convex polytopes. New York: Wiley Interscience 1967Google Scholar
  32. 32.
    Grünbaum, B.: Polytopes, graphs and complexes. Bull. Am. Math. Soc.76, 1131–1201 (1970)Google Scholar
  33. 33.
    Grünbaum, B., Shephard, G.C.: Lecture on lost mathematics. Preprint Syracuse University, 1978Google Scholar
  34. 34.
    Harary, F., Palmer, E.M.: On acyclic simplicial complexes. Mathematika15, 115–122 (1968)Google Scholar
  35. 35.
    Kalai, G.: Combinatorial problems in convexity and the combinatorics of simplicial complexes. Ph.D. Thesis, Jerusalem, 1983Google Scholar
  36. 36.
    Kalai, G.: Weakly saturated graphs are rigid. Ann. Discrete Math.20, 189–190 (1984)Google Scholar
  37. 37.
    Kalai, G.: Heperconnectivity of graphs. Graphs Comb.1, 65–80 (1985)Google Scholar
  38. 38.
    Kalai, G.: Rigidity and the lower bound theorem II: Elementary polytopes. (Preprint)Google Scholar
  39. 39.
    Kalai, G.: Rigidity and the lower bound theorem III: Triangulated manifolds with “few edges”. (Preprint)Google Scholar
  40. 40.
    Klee, V.: A comparison of primal and dual method of linear programming Num. Math.9, 227–235 (1966)Google Scholar
  41. 41.
    Klee, V.: Polytope pairs and their relations to linear programming. Acta Math.113, 1–25 (1974)Google Scholar
  42. 42.
    Klee, V.: Ad-pseudomanifold withf 0 vertices has at least df 0-(d-1)(d+2)d-simplices. Houston J. Math.1, 81–86 (1975)Google Scholar
  43. 43.
    Kühnel, W., Banchoff, T.F.: The 9 vertex complex projective plane. The Math. Intell.5, issue 3, 11–22 (1983)Google Scholar
  44. 44.
    Kühnel, W., Lassmann, G.: The unique 3-neighborly 4-manifold with few vertices. J. Comb. Theory, Ser. A35, 173–184 (1983)Google Scholar
  45. 45.
    Kuiper, N.H.: Tight embeddings and maps. Submanifolds of geometric type tree inE N, The Chern Symposium. Singer, I.M. (ed.), pp. 97–145, Berlin Heidelberg New York: Springer 1980Google Scholar
  46. 46.
    MacPherson, R.: Intersection homology. Herman Weyl lectures. (in press) (1987)Google Scholar
  47. 47.
    McMullen, P.: The numbers of faces of simplicial polytopes. Isr. J. Math.9, 559–570 (1971)Google Scholar
  48. 48.
    McMullen, P., Shephard, G.C.: Convex polytopes and the upper bound conjecture. London Math. Soc. Lecture Notes Series, vol. 3. London/New York: Cambridge Univ. Press 1971Google Scholar
  49. 49.
    McMullen, P., Walkup, D.W.: A generalized lower bound conjecture for simplicial polytopes. Mathematika18, 264–273 (1971)Google Scholar
  50. 50.
    Ringel, G.: Map color theorem. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  51. 51.
    Roth, B.: Rigid and flexible frameworks. Am. Math. Mon.88, 6–21 (1981)Google Scholar
  52. 52.
    Schenzel, P.: On the number of faces of simplicial complexes and the purity of Frobenius. Math. Z.178, 125–142 (1981)Google Scholar
  53. 53.
    Spanier, E.H.: Algebraic topology. New York: McGraw Hill 1966Google Scholar
  54. 54.
    Stanley, R.: The upper bound conjecture and Cohen-Macaulay rings. Stud. Appl. Math.54, 135–142 (1975)Google Scholar
  55. 55.
    Stanley, R.: The number of faces of simplicial convex polytopes. Adv. Math.35, 236–238 (1980)Google Scholar
  56. 56.
    Stanley, R.: The number of faces of simplicial polytopes and spheres. Discrete geometry and convexity, Goodman, J.E., Lutwak, E., Malkevitch, J., Pollack, R. (eds.), pp. 212–223. New York: Ann NY Acad Sci 1985Google Scholar
  57. 57.
    Stanley, R.: Interactions between commutative algebra and combinatorics. Boston: Birkhäuser 1983Google Scholar
  58. 58.
    Stanley, R.: Enumerative combinatorics. Vol. I, Wadsworth, Monterey, 1986Google Scholar
  59. 59.
    Stanley, R.: Generalizedh-vectors, intersection cohomology of toric varieties, and related results. Proc. Japan-USA workshop on commutative algebra and combinatorics (to appear)Google Scholar
  60. 60.
    Stoker, J.J.: Geometric problems concerning polyhedra in the large. Commun. Pure Appl. Math.21, 119–168 (1968)Google Scholar
  61. 61.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Berlin-Göttingen: Springer 1934Google Scholar
  62. 62.
    Tay, T.S., Whiteley, W.: Generating all isostatic frameworks. Struct. Topology11, 21–70 (1985)Google Scholar
  63. 63.
    Walkup, D.: The lower bound conjecture for 3-and 4-manifolds. Acta Math.125, 75–107 (1970)Google Scholar
  64. 64.
    Welsh, D.: Matroid theory. London: Academic Press 1976Google Scholar
  65. 65.
    Whiteley, W.: Cones, infinity and 1-story buildings. Struct. Topology8, 53–70 (1983)Google Scholar
  66. 66.
    Whiteley, W.: Infinitesimally rigid polyhedra I. Statics of Frameworks. Trans. Am. Math. Soc.285, 431–465 (1984)Google Scholar
  67. 67.
    Gromov, M.: Partial differential relations. Berlin Heidelberg New York: Springer 1986Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gil Kalai
    • 1
    • 2
  1. 1.Institute of MathematicsHebrew UniversityJerusalemIsrael
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations