Advertisement

Numerische Mathematik

, Volume 19, Issue 3, pp 266–282 | Cite as

Error bounds for the Galerkin method applied to singular and nonsingular boundary value problems

  • J. W. Dailey
  • J. G. Pierce
Article

Summary

The purpose of this article is to obtainL2 and uniform norm error estimates for the Galerkin approximation of the solution of certain boundary value problems via a comparison with then-norm projection of the solution. In some cases, these estimates constitute an improvement over known results.

Keywords

Error Estimate Mathematical Method Norm Error Galerkin Method Error Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bramble, J. H., Hilbert, S. R.: Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math.16, 362–369 (1971).Google Scholar
  2. 2.
    Ciarlet, P. G., Natterer, F., Varga, R. S.: Numerical methods of high-order accuracy for singular nonlinear boundary value problems. Numer. Math.15 (1970).Google Scholar
  3. 3.
    Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967).Google Scholar
  4. 4.
    Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory. Numer. Math.13, 51–77 (1969).Google Scholar
  5. 5.
    Collatz, L.: The numerical treatment of differential equations, 3rd. ed. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  6. 6.
    Dailey, J. W.: Approximation by spline-type functions and related problems. Dissertation, Case Western Reserve University, September, 1969.Google Scholar
  7. 7.
    Hedstrom, G. W., Varga, R. S.: Application of Besov spaces to spline approximation. J. Approx. Theory4, 295–327 (1971).Google Scholar
  8. 8.
    Hulme, B. L.: Interpolation by Ritz approximation. J. Math. Mech.18, 337–342 (1968).Google Scholar
  9. 9.
    Jamet, P.: Numerical methods and existence theorems for singular linear boundaryvalue problems, Doctoral Thesis, University of Wisconsin, 1967.Google Scholar
  10. 10.
    Jamet, P.: On the convergence of finite-difference epproximations to one-dimensional singular boundary-value problems. Numer. Math.14, 355–378 (1970).Google Scholar
  11. 11.
    Jerome, J. W., Pierce, J. G.: On splines associated with singular self-adjoint differential operators. J. Approx. Theory5, 15–40 (1972).Google Scholar
  12. 12.
    Jerome, J. W., Schumaker, L. L.: OnLg-splines. J. Approx. Theory2, 29–49 (1969).Google Scholar
  13. 13.
    Jerome, J. W., Varga, R. S.: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems. Theory and applications of spline functions (T. N. E. Greville, ed.), p. 103–155. New York: Academic Press 1969.Google Scholar
  14. 14.
    Kamke, E. A.: Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen. IV. Math. Z.48, 67–100 (1942).Google Scholar
  15. 15.
    Nitsche, J.: Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11, 346–348 (1968).Google Scholar
  16. 16.
    Nitsche, J.: Verfahren von Ritz und Spline-Interpolation bei Sturm-Liouville-Randwertproblemen. Numer. Math.13, 260–265 (1969).Google Scholar
  17. 17.
    Perrin, F. M., Price, H. S., Varga, R. S.: On higher-order numerical methods for nonlinear two-point boundary value problems. Numer. Math.13, 180–198 (1969).Google Scholar
  18. 18.
    Pierce, J. G., Varga, R. S.: Higher order convergence results for the Rayleigh-Ritz method applied to eigenvalue problems. II. Improved error bounds for eigenfunctions (to appear).Google Scholar
  19. 19.
    Schultz, M. H.: Multivariate spline functions and elliptic problems, approximation with special emphasis on spline functions (ed. I. J. Schoenberg), p. 279–347. New York: Academic Press 1969.Google Scholar
  20. 20.
    Schultz, M. H., Varga, R. S.: L-splines. Numer. Math.10, 345–369 (1967).Google Scholar
  21. 21.
    Strang, Gilbert: Approximation in the finite element method (to appear).Google Scholar
  22. 22.
    Strang, Gilbert, Fix, George: An analysis of the finite element method. Prentice-Hall, Inc. (to appear).Google Scholar
  23. 23.
    Swartz, B. K., Varga, R. S.: Error bounds for spline andL-spline interpolation. J. Approx. Theory (to appear).Google Scholar
  24. 24.
    Varga, R. S.: Functional analysis and approximation theory in numerical analysis. SIAM publication 1971 (to appear).Google Scholar
  25. 25.
    Yosida, K.: Functional analysis. New York: Academic Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • J. W. Dailey
    • 1
  • J. G. Pierce
    • 2
  1. 1.Department of MathematicsKent State UniversityKentUSA
  2. 2.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations