Advertisement

Numerische Mathematik

, Volume 19, Issue 3, pp 195–205 | Cite as

Ergodic computations with continued fractions and Jacobi's algorithm

  • W. A. Beyer
  • M. S. Waterman
Article

Abstract

Ergodic computational aspects of the Jacobi algorithm, a generalization to two dimensions of the continued fraction algorithm, are considered. By means of such computations the entropy of the algorithm is estimated to be 3.5. An approximation to the invariant measure of the transformation associated with the algorithm is obtained. The computations are tested by application to the continued fraction algorithm for which both entropy and the invariant measure are known.

Keywords

Entropy Mathematical Method Invariant Measure Computational Aspect Fraction Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Billingsley, Patrick: Ergodic theory and information. New York, London, and Sidney: John Wiley & Sons, Inc. 1965.Google Scholar
  2. 2.
    Jacobi, C. G. J.: Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. J. Reine Angew. Math.69, 29–64 (1968).Google Scholar
  3. 3.
    Knuth, D. E.: Euler's constant to 1271 places. Math. Comp.16, 275–281 (1962).Google Scholar
  4. 4.
    Lehmer, D. H.: Euclid's algorithm for large numbers. Amer. Math. Monthly45, 227–233 (1938).Google Scholar
  5. 5.
    Perron, Oskar: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann.64, 1–76 (1907).Google Scholar
  6. 6.
    Rohlin, V. A.: Exact endomorphisms of a lebesgue space. Izvestya Akad. Nauk. SSSR Ser. mat.24, 499–530 (1960). English Transl.: Amer Math. Soc. Translat. II Ser.39, 1–36 (1964).Google Scholar
  7. 7.
    Schweiger, F.: Geometrische und elementar metrische Sätze über den Jacobischen Algorithmus. Österr. Akad. Wiss. Wein. Math.-naturw. Kl., S-Ber. Abt. II173, 59–92 (1964).Google Scholar
  8. 8.
    Schweiger, F.: Ergodische Theorie des Jacobischen Algorithmus. Acta Arith.11, 451–460 (1966).Google Scholar
  9. 9.
    Schweiger, F.: Existenz eines invarianten Maßes beim Jacobischen Algorithmus. Acta Arith.12, 263–268 (1967).Google Scholar
  10. 10.
    Schweiger, F.: Mischungseigenschaften und Entropie beim Jacobischen Algorithmus. J. Reine Angew. Math.229, 50–56 (1968).Google Scholar
  11. 11.
    Shanks, Daniel, Wrench, John W., Jr.: Questions concerning Khinchine's constant and the efficient computation of regular continued fractions. Math. Comp.20, 444–448 (1966).Google Scholar
  12. 12.
    Stein, P. R., Ulam, S. M.: Non-linear transformation studies on electronic computers. Rozprawy Matematyczne XXXIX, Instytut Matematyczny Polskiej Akademii Nauk, Warszawa, 1964.Google Scholar
  13. 13.
    Sweeney, D. W.: On the computation of Euler's constant. Math. Comp.,17, 170–178 (1963).Google Scholar
  14. 14.
    Waterman, M. S.: A Kuzmin theorem for a class of number theoretic endomorphisms. Acta Arith.19 (1971).Google Scholar
  15. 15.
    Knuth, D. E.: The art of computer programming, volume 2 Seminumerical Algorithms. Addison-Wesley Publishing Company, 1969.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • W. A. Beyer
    • 1
  • M. S. Waterman
    • 2
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA
  2. 2.Idaho State UniversityPocatelloUSA

Personalised recommendations