Skip to main content

Advertisement

Log in

Experimental cerebral concussion

A histochemical study

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The activity of mitochondrial enzymes (succinic dehydrogenase and cytochrome oxidase) and enzymes associated with blood-brain barrier function (butyrylcholinesterase and alkaline phosphatase) in the CNS of rats was studied from 5 minutes to 62 hours after cerebral concussion. There was a transient increase in succinic dehydrogenase activity during the first hour after concussion in the neurons of the structures close to the impact. The alkaline phosphatase activity, strongly positive in the walls of normal blood vessels, decreased within five minutes after concussion; it virtually disappeared in 15 minutes but returned to normal level after 62 hours. These findings are in good correlation with previous electron microscopic observations. Their significance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakay, L., Lee, J. C., Lee, G. C.,et al., Experimental cerebral concussion. Part 1: An electron microscopic study. J. Neurosurg.47 (1977), 525–531.

    PubMed  Google Scholar 

  2. Brown, W. J., Yoshida, N., Canty, T.,et al., Experimental concussion. Ultrastructural and biochemical correlates. Amer. J. Pathol.67 (1972), 41–68.

    Google Scholar 

  3. Butcher, R. J., Diengdoh, J. D., Chayen, J., A study of the histochemical demonstration of cytochrome oxidase. Quart. J. Micro. Sci.105 (1964), 497–502.

    Google Scholar 

  4. Duchesne, P. Y., Ketelslegers, J. M., Histo-enzymologie gliale et vasculaire de régions cérébrales dépourvues de barrière hémato-encéphalique. Acta Neurol. Belg.68 (1968), 278–286.

    Google Scholar 

  5. Egger, G., The electron microscopic localisation of succinic dehydrogenase within the membranes of the mitochondrial cristae. Cytobiologie11 (1975), 110–122.

    Google Scholar 

  6. El-Badawi, A., Schenk, E. A., Butyrylcholinesterase. J. Histochem. Cytochem.15 (1967), 580–587.

    PubMed  Google Scholar 

  7. Flumerfelt, B. A., Lewis, P. R., Gwyn, D. G., Cholinesterase activity of capillaries in the rat brain. A light and electron microscopic study. Histochem. J.5 (1973), 67–77.

    PubMed  Google Scholar 

  8. Goldstein, G. W., Wolinski, J. S., Csejtey, J.,et al., Isolation of metabolically active capillaries from rat brain. J. Neurochem.25 (1975), 715–717.

    PubMed  Google Scholar 

  9. Gomori, G., Microscopic Histochemistry. Chicago: Chicago University Press. 1952.

    Google Scholar 

  10. Goodman, J. H., Bingham, W. G., Jr., Hunt, W. E., Ultrastructural blood-brain barrier alterations and edema formation in acute spinal cord trauma. J. Neurosurg.44 (1976), 418–424.

    PubMed  Google Scholar 

  11. Green, D. E., Allmann, D. W., Harris, R. A.,et al., Enzyme localization in the inner and outer mitochondrial membranes. Biochem. Biophys. Res. Communic31 (1968), 368–378.

    Google Scholar 

  12. Griffiths, I. R., Miller, R., Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J. Neurol. Sci.22 (1974), 291–304.

    PubMed  Google Scholar 

  13. Gurdjian, E. S., Recent advances in the study of the mechanism of impact injury of the head—a summary. Clin. Neurosurg.19 (1972), 1–42.

    PubMed  Google Scholar 

  14. Glyn, D. G., Wolstencroft, J. H., Cholinesterases in the area subpostrema. A region adjacent to the area postrema in the cat. J. Comp. Neurol.133 (1968), 289–308.

    PubMed  Google Scholar 

  15. Hamberger, A., Rinder, L., Experimental brain concussion. J. Neuropathol. Exp. Neurol.25 (1966), 68–75.

    Google Scholar 

  16. Hardebo, J. E., Edvinsson, L., Falck, B.,et al., Experimental models for histochemical and chemical studies of the enzymatic blood-brain barrier for amine precursors, in Cervos-Navarro, J., Betz, E., Matakas, F.,et al. (eds.): The Cerebral Vessel Wall, pp. 233–244. New York: Raven Press. 1976.

    Google Scholar 

  17. Houk, E. J., Beck, S. D., An enzymatic component of the insect blood-brain barrier: Implications of DAB (3,3′-diaminobenzidine) oxidation. J. Insect. Physiol.22 (1976), 523–528.

    PubMed  Google Scholar 

  18. Ito, T., Allen, N., Yashon, D., A mitochondrial lesion in experimental spinal cord trauma. J. Neurosurg.48 (1978), 434–442.

    PubMed  Google Scholar 

  19. Joó, F., Csillik, B., Topographic correlation between the hematoencephalic barrier and the cholinesterase activity of brain capillaries. Exp. Brain Res.1 (1966), 147–151.

    PubMed  Google Scholar 

  20. Joó, F., Várkonyi, T., Csillik, B., Developmental alterations in the histochemical structures of brain capillaries: A histochemical contribution to the problem of the blood-brain barrier. Histochemie9 (1967), 140–148.

    PubMed  Google Scholar 

  21. Karcsú, S., Jancsó, G., Tóth, L., Butyrylcholinesterase activity in fenestrated capillaries of the rat area postrema. Brain Res.120 (1977), 146–150.

    PubMed  Google Scholar 

  22. Karcsú, S., Tóth, L., Fine structural localization of acetylcholinesterase in capillaries surrounding the area postrema. Brain Res.95 (1975), 137–141.

    PubMed  Google Scholar 

  23. Lynch, S., Yarnell, P. R., Retrograde amnesia: Delayed forgetting after concussion. Am. J. Psychol.86 (1973), 643–645.

    PubMed  Google Scholar 

  24. Nachlas, M. M., Tsou, K., Souza, E. de,et al., Cytochemical demonstration of succinic dehydrogenase by the use of a new p-mitrophenyl substituted dietetrazole. J. Histochem. Cytochem.5 (1957), 420–436.

    PubMed  Google Scholar 

  25. Parsons, D. F., Recent advances correlating structure and function in mitochondria. Internation. Rev. Exp. Pathol.4 (1965), 1–54.

    Google Scholar 

  26. Rechardt, L., Leonieni, J., Activity of specific and non-specific cholinesterases in the subcommissural organ of guinea pig and albino rat. Light and electron microscopic observations. Histochemie30 (1972), 115–121.

    PubMed  Google Scholar 

  27. Rinder, L., Olsson, Y., Studies on vascular permeability changes in experimental concussion. I. Distribution of circulating fluorescent indicators in brain and cervical cord after sudden mechanical loading of the brain. Acta Neuropathol.11 (1968), 183–200.

    PubMed  Google Scholar 

  28. Rinder, L., Olsson, Y., Studies on vascular permeability changes in experimental brain concussion. II. Duration of altered permeability. Acta Neuropathol.11 (1968), 201–209.

    PubMed  Google Scholar 

  29. Singer, S. J., Architecture and topography of biologic membranes, in Weissmann, G., Claiborne, R. (eds.): Cell membranes: Biochemistry, cell biology and pathology, pp. 35–44. New York: Hp Publishing Co. 1975.

    Google Scholar 

  30. Tervo, T., Histochemical demonstration of cholinesterase activity in the cornea of the rat and the effect of various denervations on the corneal nerves. Histochem.47 (1976), 133–143.

    Google Scholar 

  31. Van Gelder, N. M., A possible enzyme barrier for γ-aminobutyric acid in the central nervous system. Progr. Brain Res.29 (1968), 259–268.

    Google Scholar 

  32. Wislocki, G. B., Dempsey, E. W., The chemical cytology of the choroid plexus and blood-brain barrier of the rhesus monkey (Macaca mulatta). J. Comp. Neurol.88 (1948), 319–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Buswell Foundation and, in part, by the Research Institute of Alcoholism, Buffalo, New York.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.C., Lee, J.C. & Bakay, L. Experimental cerebral concussion. Acta neurochir 47, 105–122 (1979). https://doi.org/10.1007/BF01404667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404667

Key words

Navigation