Skip to main content
Log in

La conjecture de Weil pour les surfacesK3

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Artin, M.: Algebraisation of formal moduli I. Global analysis. Papers in honor of K. Kodaira. Princeton University Press.

  2. Baily, W. L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Annals of Math. (2)84, 442–528 (1966). (MR35, 6870).

    Google Scholar 

  3. Bourbaki, N.: Algèbre—Chapitre 9. Paris: Hermann 1959. Act. Sci. et Ind. 1272.

    Google Scholar 

  4. Deligne, P.: Travaux de Griffiths—Séminaire Bourbaki 376—mai 1970. Lecture Notes in mathematics180. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  5. Demazure, M.: Motifs des variétés algébriques—Séminaire Bourbaki 365—mai 1970. Lecture Notes in mathematics180. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  6. Griffiths, P. A.: Periods of integrals on algebraic manifolds. (Summary of main results and discussions of open problems and conjectures). Bull. Am. Math. Soc.75, 228–296 (1970).

    Google Scholar 

  7. Kuga, M., Satake, I.: Abelian varieties attached to polarized K 3-surfaces. Math. Ann.169, 239–242 (1967). (MR35 1602).

    Google Scholar 

  8. Šafarevitch, Chafonevitch, I. R., Averbuch, B. C. Vaünberg, Ju. R., Jujtchenko, A. B., Manin, Ju. I., Moishezon, B. C., Tjurina, C. I., Tjurin, A. I.: Algebraic surfaces. Trudi Mat. Inst. Steklov LXXV.

  9. Weil, A.: Variétés abéliennes et courbes algébriques. Paris: Hermann 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Cet article a été rédigé pendant un séjour à l'Université de Warwick, que je remercie de son hospitalité.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deligne, P. La conjecture de Weil pour les surfacesK3. Invent Math 15, 206–226 (1971). https://doi.org/10.1007/BF01404126

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404126

Navigation