Numerische Mathematik

, Volume 34, Issue 4, pp 431–437 | Cite as

On some new inclusion theorems for the eigenvalues of partitioned matrices

  • D. Meyer
  • K. Veselić


Some new results of Gershgorin type for partitioned matrices have been obtained using the so-called departure from normality of the diagonal blocks. This has been shown to improve the existing results at least in the case where diagonal blocks are simultaneously nearly defective and nearly normal. Also a set of Gershgorin-like circles is found such that each of them contains at least one eigenvalue (even if no separation takes place). As a corollary it is shown that every classical Gershgorin circle of a normal matrix contains at least one eigenvalue.

Subject Classifications

AMS: 65F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F.L., Fike, C.T.: Norms and exclusion theorems. Numer. Math.2, 137–141 (1960)Google Scholar
  2. 2.
    Feingold, D.G., Varga, R.S.: Block diagonally dominant matrices and generalizations of the Gershgorin circle theorem, Pacif. J. Math.12, 1241–1250 (1962)Google Scholar
  3. 3.
    Henrici, P.: Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numer. Math.4, 24–40 (1962)Google Scholar
  4. 4.
    Johnston, R.L., Olesky, D.D.: On the computation of inclusion regions for partitioned matrices. Numer. Math.19, 238–247 (1972)Google Scholar
  5. 5.
    Morrison, D.D.: Errors in the solution of eigenvalue problems by finite difference methods, Ph.D. Dissertation, Univ. of California, Los Angeles, 1961Google Scholar
  6. 6.
    Stummel, F., Hainer, K.: Praktische Mathematik, Stuttgart: Teubner 1971Google Scholar
  7. 7.
    Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Oxford University Press 1965Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • D. Meyer
    • 1
  • K. Veselić
    • 2
  1. 1.Ratingen 8Germany (Fed. Rep.)
  2. 2.Fachbereich MathematikHagenGermany (Fed. Rep.)

Personalised recommendations