Skip to main content
Log in

The numerical solution of the inverse Stefan problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The inverse Stefan problem can be understood as a problem of nonlinear approximation theory which we solved numerically by a generalized Gauss-Newton method introduced by Osborne and Watson [19]. Under some assumptions on the parameter space we prove its quadratic convergence and demonstrate its high efficiency by three numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuska, I., Prager, M., Vitasek, E.: Numerical processes in differential equations. New York: John Wiley 1966

    Google Scholar 

  2. Barrodale, I., Young, A.: Algorithms for bestL 1 andL linear approximations on a discrete set. Numer. Math.8, 295–306 (1966)

    Google Scholar 

  3. Bonnerot, R., Jamet, P.: A second order finite element method for the one-dimensional Stefan problem. Internat. J. Numer. Methods Engrg.8, 811–820 (1974)

    Google Scholar 

  4. Budak, B.M., Vasil'eva, V.I.: The solution of the inverse Stefan problem. U.S.S.R. Computional Math. and Math. Phys.13, 130–151 (1974)

    Google Scholar 

  5. Budak, B.M., Vasil'eva, V.I.: On the solution of Stefan's converse problem II. U.S.S.R. Computional Math. and Math. Phys.13, 97–110 (1974)

    Google Scholar 

  6. Cannon, J.R.: A Cauchy problem for the heat equation. Ann. Mat. Pura Appl.65, 377–387 (1964)

    Google Scholar 

  7. Cannon, J.R., Douglas, J.: The Cauchy problem for the heat equation. SIAM J. Numer. Anal.4, 317–337 (1967)

    Google Scholar 

  8. Cannon, J.R., Ewing, R.E.: A direct numerical procedure for the Cauchy problem for the heat equation. J. Math. Anal. Appl.56, 7–17 (1976)

    Google Scholar 

  9. Cannon, J.R., Primicerio, M.: Remarks on the one-phase Stefan problem for the heat equation with flux prescribed on the fixed boundary. J. Math. Anal. Appl.35, 361–373 (1971)

    Google Scholar 

  10. Cheney, E.W.: Introduction to approximation theory. New York: McGraw-Hill, 1966

    Google Scholar 

  11. Cromme, L.: Eine Klasse von Verfahren zur Ermittlung bester nicht-linearer Tschebyscheff-Approximationen. Numer. Math.25, 447–459 (1976)

    Google Scholar 

  12. Hoffmann, K.-H., Klostermair, A.: Approximation mit Lösungen von Differentialgleichungen. In: ‘Approximationstheorie’, Lecture Notes in Mathematics 556. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  13. Jochum, P.: Differentiable dependence upon the data in a one-phase Stefan problem. J. Math. Meth. Appl. Sci.2, 73–90 (1980)

    Google Scholar 

  14. Jochum, P.: The inverse Stefan problem as a problem of nonlinear approximation theory. J. Approximation Theory (1980, in press)

  15. Künzi, H.P., Krelle, W.: Nichtlineare Programmierung. Berlin-Göttingen-Heidelberg: Springer 1962

    Google Scholar 

  16. Meinardus, G.: Approximation von Funktionen und ihre numerische Behandlung. Berlin-Heidelberg-New York: Springer 1964

    Google Scholar 

  17. Ockendon, J.R., Hodkins, W.R. (ed.): Moving boundary problems in heat flow and diffusion. Proceedings Conf. Oxford 1974, Oxford: Clarendon Press 1974

    Google Scholar 

  18. Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1972

    Google Scholar 

  19. Osborne, M.R., Watson, G.A.: An algorithm for minimax approximation in nonlinear case. Comput. J.12, 63–68 (1969)

    Google Scholar 

  20. Pucci, C.: On the improperly posed Cauchy problem for parabolic equations. Symposium on the numerical treatment of partial differential equations with real characteristics. Basel: Birkhäuser, 1959

    Google Scholar 

  21. Saguez, C.: Contrôle optimale de systèmes gouvernés par des inéquations variationelles. Applications a des problèmes de frontière libre. Rapport de Recherche 191, IRIA (1976). Contrôle optimale d'inéquation variationelles avec observation de domaines. Rapport de Recherche 286, IRIA (1978)

  22. Schabak, R.: On alternation numbers in nonlinear Chebychev approximation. J. Approximation Theory23, 379–391 (1978)

    Google Scholar 

  23. Wulbert, D.: Uniqueness and differential characterization of approximations from manifolds of functions. Amer. Math. J.93, 350–366 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jochum, P. The numerical solution of the inverse Stefan problem. Numer. Math. 34, 411–429 (1980). https://doi.org/10.1007/BF01403678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403678

Subject Classifications

Navigation