Skip to main content
Log in

Membrane traffic from the endoplasmic reticulum to the Golgi apparatus is disturbed by an inhibitor of the Ca2+-ATPase in the ER

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

An electron microscopic study of cress (Lepidium sativum L.) roots treated with cyclopiazonic acid (CPA), an inhibitor of the Ca2+-ATPase in the endoplasmic reticulum (ER) has been carried out. Drastic changes in the endomembrane system of the secretory root cap cells were observed. After treatment with CPA dense spherical or elliptoidal aggregates of ER (diameter 2–4 μm) were formed in addition to the randomly distributed ER cisternae characteristic for control cells. The formation of ER aggregates indicates that in spite of an inhibition of the Ca2+ -ATPase in the ER by CPA, membrane synthesis in the ER continued. The ER aggregates are interpreted as a reservoir of ER membrane material newly synthesized during the 2 h CPA-treatment. Hypertrophied Golgi cisternae and secretory vesicles, which are characteristic for secretory cells under control conditions, were completely absent. Additionally the shape of the Golgi stacks was flat and the diameter of the cisternae was shortened by about one third. These phenomena are indicative of an inactive state of the Golgi apparatus. The cellular organization of both other cell types of the root cap, meristematic cells and statocytes, was not visibly affected by CPA, both having a relatively low secretory activity. The formation of ER aggregates as well as the reduction of Golgi compartments are indications for the existence of a unidirectional transport of membrane material from the ER to the Golgi. It is suggested that the membrane traffic from the ER to the Golgi apparatus is regulated by the cytosolic and/or luminal calcium concentration in secretory cells of the root cap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPA:

cyclopiazonic acid

ER:

endoplasmic reticulum

References

  • Beckers CJM, Balch WE (1989) Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol 108: 1245–1256

    PubMed  Google Scholar 

  • Behnke HD (1981) Sieve-element characters. Nord J Bot 1: 381–400

    Google Scholar 

  • Booth C, Koch GLE (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737

    PubMed  Google Scholar 

  • Buckhout TJ (1983) ATP-dependent Ca2+ transport in endoplasmic reticulum isolated from roots ofLepidium sativum L. Planta 159: 84–90

    Google Scholar 

  • — (1984) Characterization of Ca2+ transport in purified endoplasmic reticulum membrane vesicles fromLepidium sativum L. roots. Plant Physiol 76: 962–967

    Google Scholar 

  • Busch MB, Körtje KH, Rahmann H, Sievers A (1993) Characteristic and differential calcium signals from cell structures of the root cap detected by energy-filtering electron microscopy (EELS/ ESI). Eur J Cell Biol 60: 88–100

    PubMed  Google Scholar 

  • Emmelot P, Benedetti EL (1960) Changes in the fine structure of rat liver cells brought about by dimethylnitrosamine. J Biophys Biochem Cytol 7: 393–395

    PubMed  Google Scholar 

  • Falk H (1962) Zur Physiologie der Golgi-Apparate in der Wurzelhaube der Zwiebel. Z Naturforsch 17 b: 862–863

    Google Scholar 

  • Goeger DE, Riley RT (1989) Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 38: 3995–4003

    PubMed  Google Scholar 

  • —, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37: 978–981

    PubMed  Google Scholar 

  • Gunning BES (1965) The greening process in plastids. 1. The structure of the prolamellar body. Protoplasma 60: 111–130

    Google Scholar 

  • Hsieh WL, Pierce WS, Sze H (1991) Calcium-pumping ATPases in vesicles from carrot cells. Plant Physiol 97: 1535–1544

    Google Scholar 

  • Jones DD, Morré DJ (1967) Golgi apparatus mediated polysaccharide secretion by outer root cap cells ofZea mays. II. Isolation and characterization of the secretory product. Z Pflanzenphysiol 56: 166–169

    Google Scholar 

  • Jones RL, Jacobsen JV (1983) Calcium regulation of the secretion of a-amylase isoenzymes and other proteins from barley aleurone layers. Planta 158: 1–9

    Google Scholar 

  • —, Robinson DG (1989) Protein secretion in plants. New Phytol 111: 567–597

    Google Scholar 

  • —, Gilroy S, Hillmer S (1993) The role of calcium in the hormonal regulation of enzyme synthesis and secretion in barley aleurone. J Exp Bot 44: 207–212

    Google Scholar 

  • Kristen U (1980) Endoplasmic reticulum —dictyosome interconnections in ligula cells ofIsoetes lacustris. Eur J Cell Biol 23: 16–21

    PubMed  Google Scholar 

  • Mason MJ, Garcia-Rodriguez C, Grinstein S (1991) Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. J Biol Chem 266: 20856–20862

    PubMed  Google Scholar 

  • Melroy D, Jones RL (1986) The effect of monensin on intracellular transport and secretion of α-amylase isoenzymes in barley aleurone. Planta 167: 252–259

    Google Scholar 

  • Mollenhauer HH, Morré DJ (1966) Golgi apparatus and plant secretion. Annu Rev Plant Physiol 17: 27–46

    Google Scholar 

  • — — (1976) Transition elements between endoplasmic reticulum and Golgi apparatus in plant cells. Cytobiologie 13: 297–306

    Google Scholar 

  • Morré DJ, Mollenhauer HH (1974) The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 84–137

    Google Scholar 

  • —, Kartenbeck J, Franke WW (1979) Membrane flow and interconversions among endomembranes. Biochim Biophys Acta 559: 71–152

    PubMed  Google Scholar 

  • —, Nowack DD, Paulik M, Brightman AO, Thornborough K, Yim J, Auderset G (1989) Transitional endoplasmic reticulum membranes and vesicles isolated from animals and plants. Homologous and heterologous cell-free membrane transfer to Golgi apparatus. Protoplasma 153: 1–13

    Google Scholar 

  • —, Keenan TW, Morré DM (1993) Golgi apparatus isolation and use in cell-free systems. A perspective. Protoplasma 172: 12–26

    Google Scholar 

  • Paulik M, Nowack DD, Morré DJ (1988) Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver. J Biol Chem 263: 17738–17748

    PubMed  Google Scholar 

  • Robinson DG (1980) Dictyosome —endoplasmic reticulum associations in higher plant cells? A serial-section analysis. Eur J Cell Biol 23: 22–36

    PubMed  Google Scholar 

  • —, Kristen U (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int Rev Cytol 77: 89–127

    Google Scholar 

  • Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidow LS, Mao J, Moir DT (1989) The yeast secretory pathway is perturbed by mutations in PMR 1, a member of a Ca2+ ATPase family. Cell 58: 133–145

    PubMed  Google Scholar 

  • Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61: 197–199

    PubMed  Google Scholar 

  • Schnepf E (1961 a) Lichtund elektronenmikroskopische Beobachtungen an Insektivoren-Drüsen über die Sekretion des Fangschleimes. Flora 151: 73–87

    Google Scholar 

  • — (1961 b) Quantitative Zusammenhänge zwischen der Sekretion des Fangschleimes und den Golgi-Strukturen beiDrosophyllum lusitanicum. Z Naturforsch 16 b: 605–610

    Google Scholar 

  • — (1963) Zur Cytologie und Physiologie pflanzlicher Drüsen. 2. Teil. Über die Wirkung von Sauerstoffentzug und von Atmungsinhibitoren auf die Sekretion des Fangschleimes vonDrosophyllum und auf die Feinstruktur der Drüsenzellen. Flora 153: 23–48

    Google Scholar 

  • — (1993) Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic. Protoplasma 172: 3–11

    Google Scholar 

  • Schröter K, Sievers A (1971) Wirkung der Turgorreduktion auf den Golgi-Apparat und die Bildung der Zellwand bei Wurzelhaaren. Protoplasma 72: 203–211

    Google Scholar 

  • Seidler NW, van Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816–17823

    PubMed  Google Scholar 

  • Sievers A, Busch MB (1992) An inhibitor of the Ca2+-ATPases in the sarcoplasmic and endoplasmic reticula inhibits transduction of the gravity stimulus in cress roots. Planta 188: 619–622

    PubMed  Google Scholar 

  • Smith RA, Duncan MJ, Moir DT (1985) Heterologous protein secretion from yeast. Science 229: 1219–1224

    PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    PubMed  Google Scholar 

  • Volkmann D, Czaja AWP (1981) Reversible inhibition of secretion in root cap cells of cress after treatment with cytochalasin B. Exp Cell Res 135: 229–236

    PubMed  Google Scholar 

  • Whaley WG (1966) Proposals concerning replication of the Golgi apparatus. In: Sitte P (ed) Probleme der biologischen Reduplikation. Springer, Berlin Heidelberg New York, pp 340–371

    Google Scholar 

  • Wrischer M (1960) Veränderungen des endoplasmatischen Reticulums pflanzlicher Zellen, verursacht durch Sauerstoffmangel. Naturwissenschaften 47: 521–522

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, M.B., Sievers, A. Membrane traffic from the endoplasmic reticulum to the Golgi apparatus is disturbed by an inhibitor of the Ca2+-ATPase in the ER. Protoplasma 177, 23–31 (1993). https://doi.org/10.1007/BF01403395

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01403395

Keywords

Navigation