Intersection numbers of sections of elliptic surfaces

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J.44, 215–290 (1977)

    Google Scholar 

  2. 2.

    Deligne, P.: Equations differentielles à points singuliers réguliers. In: Lecture Notes in Math. 163. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  3. 3.

    Eichler, M.: Eine Verallgemeinerung der Abelschen Integrale. Math. Zeitschr.67, 267–298 (1957)

    Google Scholar 

  4. 4.

    Hoyt, W.: Parabolic cohomology and cusp forms of the second kind for extensions of the field of modular functions. Preprint 1978

  5. 5.

    Hoyt, W., Schwartz, C.: Period relations for the Weierstrass equationy 2=4x 33uxu. In preparation (1979)

  6. 6.

    Iitaka, S.: Deformations of compact complex surfaces. In: Global analysis, papers in honor of K. Kodaira. Princeton: Princeton University Press 1969

    Google Scholar 

  7. 7.

    Kas, A.: On the deformation types of regular elliptic surfaces. Preprint 1976

  8. 8.

    Kodaira, K.: On compact analytic surfaces, II–III. Annals of Math.77, 563–626;78, 1–40 (1963)

    Google Scholar 

  9. 9.

    Kodaira, K.: On homotopyK−3 surfaces. In: Essays on topology and related topics, Mémoires dédiés à George deRham. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  10. 10.

    Kodaira, K.: On the structure of compact analytic surfaces, I. Amer. J. Math.87, 751–798 (1964)

    Google Scholar 

  11. 11.

    Mandelbaum, R.: On the topology of elliptic surfaces. Preprint 1977

  12. 12.

    Mandelbaum, R.: On the topology of non-simply connected elliptic surfaces with degenerate fibers. Manuscript 1978

  13. 13.

    Manin, Ju.I.: The Tate height of points on an abelian variety; its variants and applications. Amer. Math. Soc. Transl. (Series 2)59, 82–110 (1966)

    Google Scholar 

  14. 14.

    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Pub. Math. I.H.E.S.21, (1964)

  15. 15.

    Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Annals of Math.82, 249–331 (1965)

    Google Scholar 

  16. 16.

    Ogg, A.: Cohomology of abelian varieties over function fields.Annals of Math.76, 185–212 (1962)

    Google Scholar 

  17. 17.

    Schwartz, C.: Independent solutions of certain Weierstrass equations. Manuscript 1977

  18. 18.

    Schwartz, C.: On generators of the group of rational solutions of a certain Weierstrass equation. Trans. A.M.S., to appear

  19. 19.

    Shafarevitch, I.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl. (Series 2)37, 85–114 (1964)

    Google Scholar 

  20. 20.

    Shafarevitch, I., and others: Algebraic Surfaces. Moscow: Proc. Steklov Institute 1965; English Translation, Providence: A.M.S. 1967

  21. 21.

    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Princeton: Princeton University Press, 1971

    Google Scholar 

  22. 22.

    Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan11, 291–311 (1959)

    Google Scholar 

  23. 23.

    Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20–59 (1972)

    Google Scholar 

  24. 24.

    Zucker, S.: Generalized intermediate Jacobians and the theorem on normal functions. Inventiones Math.33, 185–222 (1976)

    Google Scholar 

  25. 25.

    Zucker, S.: Hodge theory with degenerating coefficients:L 2 cohomology in the Poincaré metric, Annals of Math. (1979)

Download references

Author information

Affiliations

Authors

Additional information

Supported in part by NSF Grant MCS 76-06364

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cox, D.A., Zucker, S. Intersection numbers of sections of elliptic surfaces. Invent Math 53, 1–44 (1979). https://doi.org/10.1007/BF01403189

Download citation

Keywords

  • Intersection Number
  • Elliptic Surface