Skip to main content
Log in

Behavioral and neurosensory responses of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to fluorinated analogs of aldehyde components of its pheromone

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Competitive field tests with α-fluorinated analogs of compounds III and IV (III-α-F and IV-α-F, respectively) of the boll weevil,Anthonomus grandis Boh., aggregation pheromone showed these compounds, when combined with the other pheromone components [(±)-I and II], to be as attractive as grandlure [(+)-I, II, and III+IV]. Dose-response curves constructed from electroantennograms of male boll weevils to serial stimulus loads of III, IV, III-α-F, IV-α-F, and the corresponding acyl fluorinated analogs (III-acyl-F and IV-acyl-F) showed the α-fiuorinated analogs to be as active as the pheromone components (threshold=0.1 μg), while the acyl fluorinated analogs had a 10-100 x higher threshold (=1-10 μg). Single-neuron recordings showed that IV neurons and II neurons (Dickens, 1990) responded to IV-α-F and III-α-F, respectively, while IV-acyl-F and III-acyl-F were inactive. Since a previous study showed compounds I, II, and IV to be essential for behavioral responses in the field, it seems likely that the activity of the α-fluorinated analogs observed here is due to the stimulation of IV neurons by IV-α-F as indicated in single neuron recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bengsston, M.,Rauscher, S., andArn, H. 1990. Fluorine-substituted pheromone components affect the behavior of the grape berry moth.Experientia. In press.

  • Briggs, G.G., Cayley, G.R., Dawson, G.W., Griffiths, D.C., Macaulay, E.D.M., Pickett, J.A., Pile, M.M., Wadhams, L.J., andWoodcock, C.M. 1986. Some fluorine-containing pheromone analogs.Pestic. Sci. 17:441–448.

    Google Scholar 

  • Camps, F., Fabrias, G., Gasol, V., Guerrero, A., Hernandez, R., andMontoya, R. 1988. Analogs of sex pheromone of processionary moth,Thaumetopoea pityocampa: Synthesis and biological activity.J. Chem. Ecol. 14:1331–1346.

    Google Scholar 

  • Camps, F., Gasol, V., andGuerrero, A. 1990. Inhibitory pheromonal activity promoted by sulfur analogs of the sex pheromone of the female processionary mothThaumetopoea pityocampa (Denis and Schiff).J. Chem. Ecol. 16:1155–1172.

    Google Scholar 

  • Dickens, J.C. 1979. Electrophysiological investigations of olfaction in bark beetles.Mitt. Schweiz. Entomol. Ges. 52:203–216.

    Google Scholar 

  • Dickens, J.C. 1981. Behavioural and electrophysiological responses of the bark beetle,Ips typographus, to potential pheromone components.Physiol. Entomol. 6:251–261.

    Google Scholar 

  • Dickens, J.C. 1984. Olfaction in the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae): Electroantennogram studies.J. Chem. Ecol. 10:1759–1785.

    Google Scholar 

  • Dickens, J.C. 1990. Specialized receptor neurons for pheromones and host plant odors in the boll weevil,Anthonomus grandis Boh., (Coleoptera: Curculionidae).Chem. Senses 15:311–331.

    Google Scholar 

  • Dickens, J.C., andBoldt, P.E. 1985. Electroantennogram responses ofTrirhabda bacharides (Weber) (Coleoptera: Chrysomelidae) to plant volatiles.J. Chem. Ecol. 11:767–779.

    Google Scholar 

  • Dickens, J.C., andMoorman, E.E. 1990. Maturation and maintenance of electroantennogram responses to pheromone and host odors in boll weevils fed their host plant or an artificial diet.Z. Angew. Entomol. 109:470–480.

    Google Scholar 

  • Dickens, J.C., andMori, K. 1989. Receptor chirality and behavioral specificity of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae) for its pheromone, (+)-grandisol.J. Chem. Ecol. 15:517–528.

    Google Scholar 

  • Dickens, J.C., andPayne, T.L. 1985. Chemical messengers and insect behavior, pp. 201–230,in N.B. Mandava (ed.). Handbook of Natural Pesticides: Methods, Vol. 1: Theory, Practice and Detection. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Dickens, J.C., andPrestwich, G.D. 1989. Differential recognition of geometric isomers by the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae): Evidence for only three essential components in the aggregation pheromone.J. Chem. Ecol. 15:529–540.

    Google Scholar 

  • Dickens, J.C.,Prestwich, G.D.,Sun, W.-C., andMori, K. 1990. Receptor site analysis using neurosensory responses of the boll weevil to analogs of the cyclohexylideneethanol of its aggregation pheromone.Chem. Senses Submitted.

  • Duncan, D.B. 1955. Multiple range and multipleF tests.Biometrics 11:1–42.

    Google Scholar 

  • Eidmann, H.H., Weslin, J., Harding, S., Baeckstrom, P., NoRIN, T., andVrkoc, J. 1986. A compound replacing a natural pheromone component of the spruce bark beetle.Naturwissenschaften 73:629.

    Google Scholar 

  • Hardee, D.D., McKibben, G.H., Rummel, D.R., Huddleston, P.M., andCoppedge, J.R. 1974. Response of boll weevils to component ratios and doses of the pheromone, grandlure.Environ. Entomol. 3:135–138.

    Google Scholar 

  • Hedin, P.A., Burks, M.L., andThompson, A.C. 1985. Synthetic intermediates and byproducts as inhibitors of boll weevil attractancy.J. Agric. Food Chem. 33:1011–1017.

    Google Scholar 

  • Kovats, E. 1958. Gas-chromatographische Charakterisierung organisher Verbindungen.Helv. Chim. Acta 41:1915–1932.

    Google Scholar 

  • Lindig, O.H. 1979. A replacement for cottonseed meal and meats in boll weevil diets.J. Econ. Entomol. 72:291–292.

    Google Scholar 

  • McKibben, G.H., Johnson, W.L., Edwards, R., Kotter, E., Kearny, J.F., Davich, T.B., Lloyd, E.P., andGanyard, M.C. 1980. A polyester-wrapped cigarette filter for dispensing grandlure.J. Econ. Entomol. 73:250–251.

    Google Scholar 

  • Mitchell, E.B.,Hardee, D.D., andDavich, T.B. 1976. In-field boll weevil trap. U.S. Patent No. 3,949,515.

  • Mitchell, E.R. 1981. Management of Insect Pests with Semiochemicals. Plenum Press, New York, xiv+514 pp.

    Google Scholar 

  • Mitchell, E.R., Jacobson, M., andBaumhover, A.H. 1975.Heliothis spp.: Disruption of pheromonal communication with (Z)-9-tetradecen-1-ol formate.Environ. Entomol. 4:577–579.

    Google Scholar 

  • Mitchell, E.R., Baumhover, A.H., andJacobson, M. 1976. Reduction of mating potential of maleHeliothis spp. andSpodoptera frugiperda in field plots treated with disruptants.Environ. Entomol. 5:484–486.

    Google Scholar 

  • Ostle, B. 1963. Statistics in Research. Iowa State University Press, Ames, Iowa, xv+585 pp.

    Google Scholar 

  • Pantin, C.F.A. 1948. Notes on Microscopical Techniques for Zoologists. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pavlath, A.E. 1986. Theoretical considerations for the application of aromatic and heterocyclic fluorine compounds as pesticides.Pestic. Sci. 7:412–417.

    Google Scholar 

  • Pignatello, J.J., andGrant, A.J. 1983. Structure-activity correlations among analogs of 4-methyl-3-heptanol, a pheromone component of the European elm bark beetle (Scolytus multistriatus)J. Chem. Ecol. 9:615–643.

    Google Scholar 

  • Prestwich, G.D. 1986. Fluorinated sterols, hormones and pheromones: Enzyme-targeted disruptants in insects.Pestic. Sci. 37:430–440.

    Google Scholar 

  • Prestwich, G.D. 1987. Chemistry of pheromone and hormone metabolism in insects.Science 237:999–1006.

    PubMed  Google Scholar 

  • Prestwich, G.D., Carvalho, J.F., Ding, Y.S., andHendricks, D.E. 1986. Acyl fluorides as reactive mimics of aldehyde pheromones: Hyperactivation and aphrodisia inHeliothis virescens.Experientia 42:964–966.

    Google Scholar 

  • Prestwich, G.D., Sun, W.-C., andDickens, J.C. 1988. Fluorinated analogs of aldehyde components of boll weevil pheromone: Synthesis and biological activity.J. Chem. Ecol. 14:1427–1439.

    Google Scholar 

  • Prestwich, G.D., Sun, W.-C., Mayer, M.S., andDickens, J.C. 1990. Perfluorinated moth pheromones: Synthesis and electrophysiological activity.J. Chem. Ecol. 16:1761–1778.

    Google Scholar 

  • Richerson, J.V., McCarty, F.A., andPayne, T.L. 1980. Disruption of southern pine beetle infestations with frontalure.Environ. Entomol. 9:90–93.

    Google Scholar 

  • Sanders, C.J. 1981. Spruce budworm: Effects of different blends of sex pheromone components on disruption of male attraction.Experientia 37:1176–1177.

    Google Scholar 

  • Sun, W.-C., andPrestwich, G.D. 1990. Partially fluorinated analogs of (Z)-9-dodecenyl acetate: Probes for pheromone hydrophobicity requirements.Tetrahedron Lett. 31:801–804.

    Google Scholar 

  • Tumlinson, J.H., Hardee, D.D., Gueldner, R.C., Thompson, A.C., Hedin, P.A., andMinyard, J.P. 1969. Sex pheromones produced by male boll weevils: Isolation, identification, and synthesis.Science 166:1010–1012.

    Google Scholar 

  • Villavaso, E.J. 1982. Boll weevil: Isolated field plot studies of disruption of pheromonal communication.J. G. Entomol. Soc. 17:347–350.

    Google Scholar 

  • Vité, J.P., Hughes, P.R., andRenwick, J.A.A. 1976. Southern pine beetle: Effect of aerial pheromone saturation on orientation.Naturwissenschaften 63:44.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickens, J.C., Prestwich, G.D. & Sun, W.C. Behavioral and neurosensory responses of the boll weevil,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to fluorinated analogs of aldehyde components of its pheromone. J Chem Ecol 17, 1007–1020 (1991). https://doi.org/10.1007/BF01402930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01402930

Key words

Navigation