Skip to main content

Advertisement

Log in

Changes in intracranial pressure and epidural pulse waveform following cold injury

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Using anaesthetized spontaneously breathing cats, intracranial pressure (ICP) was monitored for twenty hours following the insult of cold injury; simultaneous recordings were also made of cerebral blood flow (CBF), epidural pulse waveform (EDP-WF), and systemic arterial pressure (SAP). Results could be divided into two groups depending on whether or not ICP exceeded 30 mmHg. In group one, in which marked increase in ICP including occasional episodes of pressure waves were observed, an initial increase in CBF and the changes in EDP-WF from polyphasic to monotonous at about 20 mmHg were characteristic. On the other hand, in group two, ICP never exceeded 30 mmHg, CBF slightly and continuously decreased and EDP-WF was polyphasic throughout the course. There were no significant differences in trends in SAP, in the extent of spread of oedema and in water content of the white matter between both groups. Therefore, the amount of cerebral blood volume (CBV) due to cerebral vasodilatation was considered to account for the further increase in ICP. Moreover, changes in EDP-WF were regarded as a useful indicator in predicting the trends in ICP since these changes could be observed in a relatively lower pressure range prior to a marked increase in ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baethmann, A., Ottinger, W., Rothenfusser, W., Kempski, O., Unterberg, A., CSP-pressure of rats during ventriculo-cisternal perfusion with potential brain edema factors. In: Intracranial Pressure IV (Shulman, K.,et al., eds.), pp. 291–297. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  2. Barritault, L., Rimbert, J. N., Hirsch, J. F., Pierre-Kahn, A., Lacombe, J., Zouaoui, A., Mises, J., Gabersek, V., Vasomotor origin of intracranial pressure waves in hydrocephalic infants. Eur. J. Nucl. Med.5 (1980), 511–514.

    PubMed  Google Scholar 

  3. Beks, J. W. F., Kerckhoffs, H. P. M., Studies on the water content of cerebral tissues and intracranial pressure in vasogenic brain oedema. In: Intracranial Pressure (Brock, M.,et al., eds.), pp. 119–126. Berlin-Heidelberg-New York: Springer. 1972.

    Google Scholar 

  4. Brock, M., Furuse, M., Weber, R., Hasuo, M., Dietz, H., Brain tissue pressure gradients. In: Intracranial Pressure II (Lundberg, N., et al., eds.), pp. 215–220. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  5. Bruce, D. A., Vapalahti, M., Schutz, H., Langfitt, T. W., rCBF, CMRO2 and intracranial pressure following a local cold injury of the cortex. In: Intracranial pressure (Brock, M.,et al., eds.), pp. 85–89. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  6. Clasen, R. A., Brown, D. V. L., Leavitt, S., Hass, G. M., The production by liquid nitrogen of acute closed cerebral lesions. Surg. Gynec. Obstet.96 (1953), 605–616.

    PubMed  Google Scholar 

  7. Clasen, R. A., Sky-Peck, H. H., Pandolfi, S., Laing, I., Hass, G. M., The chemistry of isolated edema fluid in experimental cerebral injury. In: Brain Edema (Klatzo, I.,et al., eds.), pp. 536–553. Wien-New York: Springer. 1967.

    Google Scholar 

  8. Dewey, R. C., Pieper, H. P., Hunt, W. E., Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistence. J. Neurosurg.41 (1974), pp. 597–606.

    PubMed  Google Scholar 

  9. Frei, H. J., Wallenfang, Th., Poll, W., Reulen, H. J., Schubert, R., Brock, M., Regional cerebral blood flow and regional metabolism in cold induced oedema. Acta Neurochir. (Wien)29 (1973), 15–28.

    Google Scholar 

  10. Gazendam, J., Go, K. G., van Zenten, A. K., Composition of isolated edema fluid in cold-induced brain edema. J. Neurosurg.51 (1979), 70–77.

    PubMed  Google Scholar 

  11. Go, K. G., Zijlstra, W. G., Flanderijn, H., Zuiderveen, F., Circulatory factors influencing exudation in cold-induced cerebral edema. Exp. Neurol.42 (1974), 332–338.

    PubMed  Google Scholar 

  12. Go, K. G., Zuiderveen, F. Kuipers-de Jager, T. I., Responces of cortical vein wedge pressure, ventricular fluid pressure, and brain tissue pressure to elevation of arterial blood pressure under conditions of hyperventilation and freezing injury to the brain. In: Intracranial Pressure II (Lundberg, N.,et al., eds.), pp. 5–9. Berlin-Heidelberg-New York: Springer. 1975.

    Google Scholar 

  13. Hamer, J., Alberti, E., Hoyer, S., Wiedemann, K., Influence of systemic and cerebral factors on the cerebrospinal fluid pulse waves. J. Neurosurg.46 (1977), 36–45.

    PubMed  Google Scholar 

  14. Hirai, O., Ishikawa, M., Handa, H., Changes of epidural pulse waveform in increased intracranial pressure: An experimental study. Brain and Nerve33 (1981), 1235–1242.

    PubMed  Google Scholar 

  15. Hirai, O., Handa, H., Ishikawa, M., Intracranial pressure pulse waveform: Consideration about its origin and methods of estimating intracranial pressure dynamics. Brain and Nerve34 (1982), 1059–1065.

    PubMed  Google Scholar 

  16. Hirai, O., Handa, H., Ishikawa, M., Kim, S. H., Epidural pulse waveform as an indicator of intracranial pressure dynamics. Surg. Neurol.21 (1984), 67–74.

    PubMed  Google Scholar 

  17. Klatzo, I., Piraux, A., Laskowski, E. J., The relationship between edema, bloodbrain-barrier and tissue elements in a local brain injury. J. Neuropath, exp. Neurol.17 (1958), 548–564.

    Google Scholar 

  18. Kuschinsky, W., Wahl, M., Bosse, O., Thurau, K., Perivascular potassium and PH as determinants of local pial arterial diameter in cats. A microapplication study. Circ. Res.31 (1972), 240–247.

    PubMed  Google Scholar 

  19. Lassen, N. A., The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet2 (1966), 1113–1115.

    PubMed  Google Scholar 

  20. Marmarou, A., Shulman, K., Shapiro, K., Poll, W., The time course of brain tissue pressure and local CBF in vasogenic edema. In: Dynamics of Brain Edema (Pappius, H. M.,et al., eds.), pp. 113–121. Berlin-Heidelberg-New York: Springer. 1976.

    Google Scholar 

  21. Marshall, L. F., Bruce, D. A., Graham, D. I., Langfitt, T. W., Alterations in behavior, brain electrical activity, cerebral blood flow, and intracranial pressure produced by triethyl tin sulfate induced cerebral edema. Stroke7 (1976), 21–25.

    PubMed  Google Scholar 

  22. Pappius, H. M., Biochemical studies on experimental brain edema. In: Brain Edema (Klatzo, I.,et al., eds.), pp. 445–460. Wien-New York: Springer. 1967.

    Google Scholar 

  23. Portnoy, H. D., Chopp, M., Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia. Neurosurg.9 (1981), 14–27.

    Google Scholar 

  24. Portnoy, H. D., Chopp, M., Branch, C., Shannon, M. B., Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J. Neurosurg.56 (1982), 666–678.

    PubMed  Google Scholar 

  25. Reilly, P. L., Farrar, J. K., Miller, J. D., Vascular reactivity in the primate brain after acute cryogenic injury. J. Neurol. Neurosurg. Psychiat.40 (1977), 1092–1101.

    PubMed  Google Scholar 

  26. Reulen, H. J., Kreysch, H. G., Measurement of brain tissue pressure in cold induced cerebral oedema. Acta Neurochir. (Wien)29 (1973), 29–40.

    Google Scholar 

  27. Risberg, J., Ancri, D., Ingvar, D. H., Correlation between cerebral blood volume and cerebral blood flow in the cat. Exp. Brain Res.8 (1969), 321–326.

    PubMed  Google Scholar 

  28. Risberg, J., Lundberg, N., Ingvar, D. H., Regional cerebral blood volume during acute transient rises of the intracranial pressure (Plateau waves). J. Neurosurg.31 (1969), 303–310.

    PubMed  Google Scholar 

  29. Schutta, H. S., Kassell, N. F., Langfitt, T. W., Brain swelling produced by injury and aggravated by arterial hypertension. Brain91 (1968), 281–298.

    PubMed  Google Scholar 

  30. Sola, G. R., Vaquero, J., Cabezudo, J., Bravo, G., Evolution of intracranial pressure and cerebral blood flow in cryogenic cerebral edema. In: Intracranial Pressure IV (Shulman, K.,et al., eds.), pp. 268–271. Berlin-Heidelberg-New York: Springer. 1980.

    Google Scholar 

  31. Sutton, L. N., Bruce, D. A., Welsh, F. A., Jaggi, J. L., Metabolic and electrophysiologic consequences of vasogenic edema. In: Advances in Neurology, vol. 28. Brain Edema (Cervos-Navarro, J., et al., eds.), pp. 241–254. New York: Raven Press. 1980.

    Google Scholar 

  32. Yamamoto, L., Soejima, T., Meyer, E., Feindel, W., Early hemodynamic changes at the microcirculatory level following focal cryogenic injury over the cortex. In: Dynamics of Brain Edema (Pappius, H. M.,et al., eds.), pp. 59–62. Berlin-Heidelberg-New York: Springer. 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, O., Handa, H., Ishikawa, M. et al. Changes in intracranial pressure and epidural pulse waveform following cold injury. Acta neurochir 77, 14–21 (1985). https://doi.org/10.1007/BF01402300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01402300

Keywords

Navigation