Skip to main content
Log in

Interstitial brachytherapy for low-grade cerebral gliomas: Analysis of results in a series of 36 cases

  • Clinical Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The results obtained with interstitial brachytherapy in thirty-six low-grade cerebral gliomas (2 pilocytic astrocytomas, 23 astrocytomas and 11 oligodendrogliomas) are reported (mean follow-up: 75 months, range 37–159). All tumours were situated in locations which did not call for surgical removal as the treatment of choice. Their volume ranged from 4 to 82 cc (m=32); the Karnofsky performance status (KPS) of the treated patients lay between 0.60 and 0.90.

The sources utilized (Iridium-192 in 32 cases and Iodine-125 in 4) were implanted permanently in 22 patients and temporarily in 14, using the Talairach stereotactic apparatus. The mean peripheral dose was 89.7 Gy for the permanent implants and and 42.8 Gy with a rate of 32.05 cGy/h for the temporary implants. External beam irradiation was added for tumour volumes greater than 35 cc (19 cases) on a second target volume extending 2 cm beyond the tumoural borders treated with interstitial irradiation.

The survival estimates for the entire group showed a probability of 82.9% at 60 months, of 56.8% at 96, 39.4% at 120 (m.s.t.: 112 months). The quality of life in the treated patients was satisfactory, KPS never falling below a mean score of 0.70. The extent of the target volume turned out to be the most significant factor influencing survival at the multivariate analysis. Severe neurological impairment due to radionecrosis occurred in 4 patients (11%), three of them requiring surgical decompression. Target volume and radiation dose showed a direct correlation with the risk of radionecrosis at the regression analysis, the critical values being 35 cc and 100 Gy (permanent implants) or 50 Gy (42 cGy/h, temporary implants) respectively. The analysis of the results indicates that, even though many questions still remain open, brachytherapy can represent a valid alternative to surgery for tumours not suitable for surgical removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvord EC Jr (1976) Why do gliomas metastasize? Arch Neurol 33: 3–75

    Google Scholar 

  2. Anderson LL (1975) Dosimetry for interstitial radiation therapy. In: Hilaris BS (ed) Handbook of interstitial brachytherapy. Publishing Services Group, Acton, Massachusetts, pp 87–115

    Google Scholar 

  3. Bancaud J, Talairach J, Geier S, Scarabin JM (1973) EEG et SEEG dans les tumeurs cérébrales et l'épilepsie. Edifor, Paris, pp 53–182

    Google Scholar 

  4. Bashir R, Hochberg F, Oot R (1988) Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23: 27–30

    PubMed  Google Scholar 

  5. Bernstein M, Gutin PH (1981) Interstitial irradiation of brain tumors: a reveiw. Neurosurgery 9: 741–750

    PubMed  Google Scholar 

  6. Bernstein M, Laperriere N, Leung P, McKenzie S (1990) Interstitial brachytherapy for malignant brain tumors: Preliminary results. Neurosurgery 26: 371–380

    PubMed  Google Scholar 

  7. Burger PC, Dubois PJ, Schold SC (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58: 159–169

    PubMed  Google Scholar 

  8. Cox DR (1972) Regression models and life tables. J R Stat Soc (B) 34: 187–220

    Google Scholar 

  9. Danlos H (1905) Quelques considérationes sur le traitement des dermatoses par le radium. J Physiotherapie (Paris) 3: 98–106

    Google Scholar 

  10. Daumas-Duport C, Vedrenne C, Szikla G (1979) Contribution of stereotactic biopsies to the 3D localization of brain tumors, gliomas in particular. In: Szikla G (ed) Stereotactic cerebral irradiation. Elsevier, North Holland, Amsterdam, pp 33–41

    Google Scholar 

  11. Eddy ME, Selker RG, Anderson L (1986) On a method of dosimetry planning and implantation of interstitial irradiation in malignant gliomas. J Neurooncol 4: 131–139

    PubMed  Google Scholar 

  12. Ellis F (1968) Relationship of biological effect to dose-time fractionation factors in radiotherapy. In: Ebert M, Howard A (eds) Current topics in radiation research. North Holland, Amsterdam, pp 359–397

    Google Scholar 

  13. Findlay PA, Wright DC, Rosenow U, Harrington FS, Miller RW (1985) 125-I interstitial brachytherapy for primary malignant brain tumors: technical aspects of treatment planning and implantation methods. Int J Radiation Oncol Biol Phys 11: 2021–2026

    Google Scholar 

  14. Frazier CH (1920) The effects of radium emanations upon brain tumors. Surg Gynecol Obstet 31: 236–239

    Google Scholar 

  15. Gutin PH, Bernstein M (1984) Stereotaxic interstitial brachytherapy for malignant brain tumors. Prog Exp Tumor Res 28: 166–182

    PubMed  Google Scholar 

  16. Gutin PH, Dormandy RH Jr (1982) A coaxial catheter system for after loading radioactive sources for the interstitial irradiation of brain tumors. Technical note. J Neurosurg 56: 734–735

    PubMed  Google Scholar 

  17. Gutin PH, Leibel SA (1985) Stereotaxic interstitial irradiation of malignant brain tumors. Neurol Clin 3: 883–893

    PubMed  Google Scholar 

  18. Gutin PH, Leibel SA, Wara WM, Choucair A, Levin VA, Philips TL, Silver P, Da Silva V, Edwards MSB, Davis RL, Weaver KA, Lamb S (1987) Recurrent malignant gliomas: survival following interstitial brachytherapy with high-activity iodine-125 sources. J Neurosurg 67: 864–873

    PubMed  Google Scholar 

  19. Gutin PH, Philips TL, Wara WM, Leibel SA, Hosobuchi Y, Levin VA, Weaver KA, Lamb S (1984) Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg 60: 61–68

    PubMed  Google Scholar 

  20. Hall EJ (1972) Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol 45: 81–97

    PubMed  Google Scholar 

  21. Hartmann GH, Schlegel W, Scharfenberg H (1983) The three dimensional dose distribution of 125-I seeds in tissue. Phys Med Biol 28: 693–699

    PubMed  Google Scholar 

  22. Hilaris BS (1968) Techniques for interstitial and intracavitary radiation. Cancer 22: 745–751

    PubMed  Google Scholar 

  23. Hilaris BS (1975) Handbook of interstitial brachytherapy. Publishing Sciences Group, Acton, MA, pp 87–115

    Google Scholar 

  24. Hirsch O (1912) Die operative Behandlung von Hypophysistumoren: Nach endonasalen Methoden. Arch Laryngol Rhinol 26: 529–686

    Google Scholar 

  25. Hochberg FH, Pruitt A (1980) Assumption in the radiotherapy of glioblastoma. Neurology 30: 907–911

    PubMed  Google Scholar 

  26. Hoshino T, Wilson CB (1975) Review of basic concepts of cell kinetics as applied to brain tumors. J Neurosurg 42: 123–131

    PubMed  Google Scholar 

  27. Hosobuchi Y, Phillips TL, Stupar TA, Gutin PH (1980) Interstitial brachytherapy of primary brain tumors: preliminary report. J Neurosurg 53: 613–617

    PubMed  Google Scholar 

  28. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. Am Stat Assoc J 53: 457–481

    Google Scholar 

  29. Karnofsky DA, Abelmann WH, Carver LF, Burchenal JH (1948) The use of the nitrogen mustards in the palliative treatment of carcinoma with particular reference to bronchogenic carcinoma. Cancer 1: 634–656

    Google Scholar 

  30. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66: 865–874

    PubMed  Google Scholar 

  31. Kelly PJ, Olson MH, Wright AE (1978) Stereotactic implantation of iridium 192 into CNS neoplasms. Surg Neurol 10: 349–354

    PubMed  Google Scholar 

  32. Kim JH, Hilaris B (1975) Iodine 125 source in interstitial tumor therapy: Clinical and biological considerations. AJR 123: 163–169

    Google Scholar 

  33. Krishnaswamy V (1978) Dose distribution around an 125-I seed source in tissue. Radiology 126: 489–491

    PubMed  Google Scholar 

  34. Lee ET, Desu M (1972) A computer program for comparing K samples with right-censored data. Comput Programs Biomed 2: 315–321

    PubMed  Google Scholar 

  35. Leibel SA, Sheline GE (1987) Radiation therapy for neoplasms of the brain. J Neurosurg 66: 1–22

    PubMed  Google Scholar 

  36. Ling CC, Anderson LL, Shipley WU (1979) Dose inhomogeneity in interstitial implants using 125-I seeds. Int J Radiat Oncol Biol Phys 5: 419–425

    PubMed  Google Scholar 

  37. Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int Radiat Oncol Biol Phys 7: 243–252

    Google Scholar 

  38. Martins AN, Johnston JS, Henry JM, Stoffel TJ, Di Chiro G (1977) Delayed radiation necrosis of the brain. J Neurosurg 47: 336–345

    PubMed  Google Scholar 

  39. Massey V, Wallner KE (1990) Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 18: 395–398

    PubMed  Google Scholar 

  40. Mundinger F (1958) Beitrag zur Dosimetrie und Applikation von Radio-Tantal (Ta 182) zur Langzeitbestrahlung von Hirngeschwülsten. Fortschr Röntgenstr 89: 23–25

    Google Scholar 

  41. Mundinger F (1963) Die interstitielle radio-isotopen Bestrahlung von Hirntumoren mit vergleichenden Langzeitergebnissen zur Röntgentiefentherapie. Acta Neurochir (Wien) 11: 89–109

    Google Scholar 

  42. Mundinger F (1966) The treatment of brain tumors with radioisotopes. Prog Neurol Surg 1: 202–257

    Google Scholar 

  43. Mundinger F (1970) The treatment of brain tumors with interstitially applied radioactive isotopes. In: Wang Y, Paoletti P (eds) Radionuclide applications in neurology and neurosurgery. Thomas, Springfield, Illinois, pp 199–265

    Google Scholar 

  44. Mundinger F (1979) Rationale and methods of interstitial iridium-192 brachycurietherapy and iridium-192 or iodine-125 protracted long-term irradiation. In: Szikla G (ed) Stereotactic cerebral irradiation. Elsevier, North Holland, Amsterdam, pp 101–115

    Google Scholar 

  45. Mundinger F (1987) Stereotactic biopsy and technique of implantation (instillation) of radionuclids. In: Jellinger K (ed) Therapy of malignant brain tumors. Springer, Wien New York, pp 134–194

    Google Scholar 

  46. Mundinger F, Busam B, Birg W, Schildge J (1979) Results of interstitial iridium-192 brachy-curie therapy and Iridium-192 protracted long-term irradiation. In Szikla G (ed) Stereotactic cerebral irradiation. Elsevier, North Holland, Amsterdam, pp 303–319

    Google Scholar 

  47. Mundinger F, Ostertag CB, Birg W, Weigel K (1980) Stereotactic treatment of brain lesions. Biopsy, interstitial radiotherapy (iridium-192 and iodine-125) and drainage procedures. Appl Neurophysiol 43: 198–204

    PubMed  Google Scholar 

  48. Mundinger F, Riechert T (1962) Stereotaxic irradiation-procedure of brain tumors and pituitary adenomas by means of radioisotopes and its results. Confin Neurol 22: 190–203

    PubMed  Google Scholar 

  49. Nazzaro JM, Neuwell EA (1990) The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg 73: 331–344

    PubMed  Google Scholar 

  50. Ostertag CB (1983) Biopsy and interstitial irradiation of cerebral gliomas. Ital J Neurol Sci [Suppl] 2: 121–128

    Google Scholar 

  51. Ostertag CB (1989) Stereotactic interstitial radiotherapy for gliomas. In: Broggi G, Gerosa MA (eds) Cerebral gliomas. Elsevier, Amsterdam, pp 207–215

    Google Scholar 

  52. Ostertag CB, Kreth FW (1993) Iodine-125 interstitial irradiation of cerebral gliomas. Acta Neurochir (Wien) 119: 53–61

    Google Scholar 

  53. Ostertag CB, Weigel K, Warnke P, Lombek G, Kleihues P (1983) Sequential morphologic changes in the dog brain after interstitial iodine-125 irradiation. Neurosurgery 13: 523–528

    PubMed  Google Scholar 

  54. Pankoast HK (1922) Treatment of brain tumors by radiation. AJR 9: 42–47

    Google Scholar 

  55. Pearson K, Lee A (1903) On the laws of inheritance in man. I. Inheritance of physical characters. Biometrika 2: 357–462

    Google Scholar 

  56. Pierquin B (1964) Précis de Curiethérapie. Masson et Cie, Paris

    Google Scholar 

  57. Pierquin B (1976) The destiny of brachytherapy in oncology. AJR 127: 495–499

    PubMed  Google Scholar 

  58. Pierquin B (1979) The time factor in curietherapy. In: Szikla G (ed) Stereotactic cerebral irradiation. Elsevier, North Holland, Amsterdam, p 175

    Google Scholar 

  59. Rossi GF, Scerrati M, Roselli R (1985) Epileptogenic cerebral low-grade tumors: effect of interstitial stereotactic irradiation on seizures. Appl Neurophysiol 48: 127–132

    PubMed  Google Scholar 

  60. Rougier A, Pigneux J, Cohadon F (1984) Combined interstitial and external irradiation of gliomas. Acta Neurochir (Wien) [Suppl] 33: 345–353

    Google Scholar 

  61. Russell DS, Rubinstein LJ (1989) Pathology of tumors of the nervous system. Edward Arnold, London, pp 1–57

    Google Scholar 

  62. Safdari H, Fuentes JM, Dubois JB, Alirezai M, Castan P, Vlahovitch B (1985) Radiation necrosis of the brain: time of onset and incidence related to total dose and fractionation of radiation. Neuroradiology 27: 44–47

    PubMed  Google Scholar 

  63. Salazar OM, Rubin P, Feldstein ML, Pizzutiello R (1979) High dose radiation therapy in the treatment of malignant gliomas: Final report. Int J Rad Oncol Biol Phys 5: 1733–1740

    Google Scholar 

  64. Salcman M, Sewchand W, Amin PP, Bellis EN (1986) Technique and preliminary results of interstitial irradiation for primary brain tumors. J NeuroOncol 4: 141–149

    PubMed  Google Scholar 

  65. Sauer R (1987) Radiation therapy of brain tumors. In: Jellinger K (ed) Therapy of malignant brain tumors. Springer, Wien New York, pp 195–276

    Google Scholar 

  66. Scerrati M, Arcovito G, D'Abramo G, Montemaggi P, Pastore G, Piermattei A, Romanini A, Rossi GF (1982) Stereotactic interstitial irradiation of brain tumors: preliminary report. RAYS 7: 93–99

    Google Scholar 

  67. Scerrati M, Fiorentino A, Fiorentino M, Pola P (1984) Stereotaxic device for polar approaches in orthogonal systems. Technical note. J Neurosurg 61: 1146–1147

    PubMed  Google Scholar 

  68. Scerrati M, Roselli R, Iacoangeli M, Montemaggi P, Cellini N (1989) Stereotactic interstitial irradiation of slow growing brain gliomas: preliminary results. In: Broggi G, Gerosa MA (eds) Cerebral glioma. Elsevier, Amsterdam, pp 217–220

    Google Scholar 

  69. Scerrati M, Roselli R, Iacoangeli M, Montemaggi P, Cellini N, Falcinelli R, Rossi GF (1989) Comments on brachycurie therapy of cerebral tumours. Acta Neurochir (Wien) [Suppl] 46: 94–96

    Google Scholar 

  70. Scerrati M, Rossi GF (1984) The reliability of stereotactic biopsy. Acta Neurochir (Wien) [Suppl] 33: 201–205

    Google Scholar 

  71. Scerrati M, Rossi GF, Roselli R (1987) The spatial and morphological assessment of cerebral neuroectodermal tumours through stereotactic biopsy. Acta Neurochir (Wien) [Suppl] 39: 28–33

    Google Scholar 

  72. Scherer HJ (1940) The forms of growth in glioma and their practical significance. Brain 63: 1–35

    Google Scholar 

  73. Schiffer D (1993) Brain tumors. Springer, Berlin Heidelberg New York Tokyo, pp 1–110

    Google Scholar 

  74. Schiffer D, Giordana MT, Soffietti R, Sciolla R (1982) Histological observation on the regrowth of malignant gliomas after radiotherapy and chemotherapy. Acta Neuropathol (Berl) 58: 291–299

    Google Scholar 

  75. Schiffer D, Giordana MT, Soffietti R, Tarenzi L, Milani R, Vasario E, Paoletti P (1981) Radio- and chemotherapy of malignant gliomas. Pathological changes in the normal nervous tissue. Acta Neurochir (Wien) 58: 37–58

    Google Scholar 

  76. Schlienger M, Bouhnik H, Missir O, Constans JP, Szikla G (1979) Association of the temporary interstitial 192-Ir implantation and external radiotherapy in the management of supratentorial tumors. Technique and dosimetry. In: Szikla G (ed) Cerebral stereotactic irradiation. Elsevier, North Holland, Amsterdam, pp 117–121

    Google Scholar 

  77. Selker RG, Eddy MS (1989) Results of 125-I implants in newly diagnosed and “failed” glioblastoma (and other) patients. Proceedings of the 8th International Conference on Brain Tumors Research and Therapy. Abstract. J NeuroOncol [Suppl] 7: 95 S26

    Google Scholar 

  78. Shapiro WR (1982) Treatment of neuroectodermal tumors. Ann Neurol 12: 231–237

    PubMed  Google Scholar 

  79. Shaw EG, Daumas-Duport C, Scheithauer BW, Gilbertson T, O'Fallon J, Earle JD, Laws ER, Okazaki H (1989) Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg 70: 853–861

    PubMed  Google Scholar 

  80. Sheline GE (1983) Radiotherapy of adult primary cerebral neoplasms. In: Walker MD (ed) Oncology of the nervous system. Martinus Nijhoff, Boston, pp 223–245

    Google Scholar 

  81. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6: 1215–1228

    PubMed  Google Scholar 

  82. Szikla G (1979) Stereotactic Cerebral Irradiation. Proceedings of the INSERM Symposium on Stereotactic Irradiation held in Paris (France), 13 July, 1979. Elsevier, North Holland Biomedical Press, Amsterdam, pp 131–338

    Google Scholar 

  83. Szikla G, Peragut JC (1975) Irradiation interstitielle des gliomes. Neurochirurgie 21 [Suppl] 2: 187–228

    Google Scholar 

  84. Szikla G, Schlienger M, Blond S, Daumas-Duport C, Missir O, Miyahara S, Musolino A, Schaub C (1984) Interstitial and combined interstitial external irradiation of supratentorial gliomas. Results in 61 cases treated 1973–1981. Acta Neurochir (Wien) [Suppl] 33: 355–362

    Google Scholar 

  85. Talairach J, Aboulker P, Ruggiero G, David M (1954) Utilisation de la méthode radiostéréotaxique pour le traitment radioactif in situ des tumeurs cérébrales. Rev Neurol (Paris) 90: 656–657

    Google Scholar 

  86. Talairach J, Aboulker J, Ruggiero G, David M (1955) Essai d'un nouveau traitment des tumeurs cérébrales inopérables: mise en place d'or radio-actif par stéréotaxie. Sem Hop Paris 31: 1–6

    Google Scholar 

  87. Talairach J, Ruggiero G, Aboulker J, David M (1955) A new method of treatment of inoperable brain tumours by stereotaxic implantation of radioactive gold — a preliminary report. Br J Radiol 28: 62–74

    PubMed  Google Scholar 

  88. Wara WM (1985) Radiation therapy for brain tumors. Cancer 55: 2291–2295

    PubMed  Google Scholar 

  89. Willis BK, Heilbrun MP, Sapozink MD, McDonald PR (1988) Stereotactic interstitial brachytherapy of malignant astrocytomas with remarks on postimplantation computed tomographic appearance. Neurosurgery 23: 348–354

    PubMed  Google Scholar 

  90. Wowra B, Schmitt HP, Sturm V (1989) Incidence of late radiation necrosis with transient mass effect after interstitial low dose rate radiotherapy for cerebral gliomas. Acta Neurochir (Wien) 99: 104–108

    Google Scholar 

  91. Zülch KJ (1979) Types histologiques des tumeurs du système nerveux central. Classification histologique internationale des tumeurs. OMS, Genève, pp 17–67

    Google Scholar 

  92. Zülch KJ (1986) Brain tumors. Their biology and pathology. Springer, Berlin Heidelberg New York Tokyo, pp 1–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Study partially supported by a grant from the Italian Ministry of University and of Scientific and Technological Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scerrati, M., Montemaggi, P., Iacoangeli, M. et al. Interstitial brachytherapy for low-grade cerebral gliomas: Analysis of results in a series of 36 cases. Acta neurochir 131, 97–105 (1994). https://doi.org/10.1007/BF01401459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01401459

Keywords

Navigation