Advertisement

Numerische Mathematik

, Volume 32, Issue 4, pp 359–371 | Cite as

An algorithm for the zeros of transcendental functions

  • Soon Park Chung
Article
  • 50 Downloads

Summary

In this paper, we extend the dual form of the generalized algorithm of Sebastião e Silva [3] for polynomial zeros and show that it is effective for finding zeros of transcendental functions in a circle of analyticity.

Subject Classifications

AMS(MOS) 65H05 R 5.15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, L.: Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. I. Quadratisch konvergente Durchführung der Bernoulli-Jacobischen Methoden zur Nullstellenbestimmung von Polynomen. Bayer. Akad. Wiss. Math. nat. Kl. S.-B., 275–303 (1954)Google Scholar
  2. 2.
    Bauer, F.L.: Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms. Bayer. Akad. Wiss. Math. Kl. S.-B., 163–203 (1956)Google Scholar
  3. 3.
    Chung, S.P.: Generalization and Acceleration of an Algorithm of Sebastião e Silva and Its Duals. Numer. Math.25, 365–377 (1976)Google Scholar
  4. 4.
    Householder, A.S.: The Theory of Matrices in Numerical Analysis. Blaisdell Publishing Company, New York, 1964Google Scholar
  5. 5.
    Householder, A.S.: Generalizations of an Algorithm of Sebastião e Silva. Numer. Math.16, 375–382 (1971).Google Scholar
  6. 6.
    Householder, A.S.: Multigradients and the Zeros of Transcendental Functions. Linear Algebra and Its Application,4, 175–182 (1971)Google Scholar
  7. 7.
    Sebastião e Silva, J.: Sur une méthode d'approximation semblable a celle de Graeffe. Portugal Math.2, 271–279 (1941)Google Scholar
  8. 8.
    Stewart, G.W.: On a Companion Operator for Analytic Functions. Numer. Math.18, 26–43 (1971)Google Scholar
  9. 9.
    Walsh, J.L.: Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society Colloquium Publications, Volume XX, New York, 1935Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Soon Park Chung
    • 1
  1. 1.Department of MathematicsUniversity of Michigan-DearbornDearbornUSA

Personalised recommendations