Skip to main content

Advertisement

Log in

ICP Dependent changes of CSF outflow resistance

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

CSF outflow resistance was studied in cats using the lumbar infusion tests. Different infusion rates were applied from 0.012 to 1.8 ml/min. ICP level obtained during infusions varied from 8.9 ± 3.0 to 144.0 ± 25.7 mmHg. The calculated resistance (R) values were within 75.2 ± 14.4 to 255.6 ± 71.2 mm Hg/ml/min.

The relation between ICP and R are characterized by a curve which can be divided into three parts. First R rises until an ICP level of about 20 mmHg is reached, then R decreases fast until the ICP value is about 50 mmHg, a further drop is much slower and the ICP/ R curve becomes almost parallel to the ICP axis. The possible reasons for the ICP dependent changes of R as well as the clinical importance of the results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Börgesen SE (1984) Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 71: 1–45

    Google Scholar 

  2. Börgesen SE, Westergaard L, Gjerris F (1981) Isotope cisternography and conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 57: 67–73

    Google Scholar 

  3. Butler AB, van Landingham KE, McComb JG (1983) Pressure-facilitated CSF flow across the arachnoid membrane. In: Ishii S,et al (eds) Intracranial pressure V. Springer, Berlin Heidelberg New York, pp 598–604

    Google Scholar 

  4. Butler AB (1984) Correlated physiologic and structural studies of CSF absorption. In: Shapiro Ket al (eds) Hydrocephalus. Raven Press, New York, pp 41–57

    Google Scholar 

  5. Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51: 273–311

    PubMed  Google Scholar 

  6. Czernicki Z, Szewczykowski J, Kunicki A, Sliwka S, Korsak-Sliwka J, Pawlowski G, Dziduszko J, Mempel E, Jurkiewicz J, Augustyniak B (1984) Computerized test II. Clinical application. Neurol Neurochir Pol 18: 561–565

    PubMed  Google Scholar 

  7. Dacey RG, Welsh JE, Scheid WM, Winn HR, Sande MA, Jane JA (1980) Bacterial meningitis: changes in cerebrospinal fluid outflow resistance. In: Shulman Ket al (eds) Intracranial pressure IV. Springer, Berlin Heidelberg New York, pp 350–353

    Google Scholar 

  8. Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93: 665–678

    PubMed  Google Scholar 

  9. Ekstedt J (1975) CSF hydrodynamics studied by means of constant pressure infusion technique. In: Lundberg Net al (eds) Intracranial pressure II. Springer, New York Heidelberg Berlin, pp 35–41

    Google Scholar 

  10. Gjerris F, Börgesen SE, Sörensen PS, Boesen F, Schmidt K, Harmsen A, Lester J (1987) Resistance to cerebrospinal fluid outflow and intracranial pressure in patients with hydrocephalus after subarachnoid haemorrhage. Acta Neurochir (Wien) 88: 79–86

    Google Scholar 

  11. Huckman MS (1981) Normal pressure hydrocephalus, evaluation of diagnostic and prognostic tests. Am J Neuroradiol 2: 383–395

    Google Scholar 

  12. Hussey F, Schanzer B, Katzman R (1970) A simple constant infusion manometric test for measurement of CSF absorption. II Clinical studies. Neurology 20: 665–680

    PubMed  Google Scholar 

  13. Johnson RN, Mann JD (1984) Integrated quantitative experimental analyses of the ICP control system. In: Shapiro Ket al (eds) Hydrocephalus. Raven Press, New York, pp 179–192

    Google Scholar 

  14. Katzman R, Hussey F (1970) A simple constant infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20: 534–544

    PubMed  Google Scholar 

  15. van Landingham KE, Maffeo ChJ, Adams JM, Butler AB (1983) CSF outflow resistance: effects of transvillus pressure gradients and CSF production. In: Ishii Set al (eds) Intracranial pressure V. Springer, Berlin Heidelberg New York, pp 605–610

    Google Scholar 

  16. Maksymowicz W, Czosnyka M, Koszewski W, Szymanska A, Traczewski W (1989) The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochir (Wien) 101: 112–116

    Google Scholar 

  17. Mann JD, Butler A, Johnson RN, Bass NH (1979) Clearance of macromolecular and particulated substances from the cerebrospinal fluid system of the rat. J Neurosurg 50: 343–348

    PubMed  Google Scholar 

  18. McComb J (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59: 369–383

    PubMed  Google Scholar 

  19. McComb J, Hyman S, Weiss MH (1984) Lymphatic drainage of cerebrospinal fluid in the cat. In: Shapiro Ket al (eds) Hydrocephalus. Raven Press, New York, pp 83–89

    Google Scholar 

  20. Philippon J, George B, Levante A, Thurel C, Visot A, Cophignan J (1976) Subarachnoid infusion test. Its value in the prognosis of shunted normal pressure hydrocephalus. In: Beks JWFet al (eds) Intracranial pressure III. Springer, Berlin Heidelberg New York, pp 193–198

    Google Scholar 

  21. Portnoy HD, Croissant PD (1976) A practical method for measuring hydrodynamics of cerebrospinal fluid. Surg Neurol 5: 273–277

    PubMed  Google Scholar 

  22. Povlishock JT, Levine JE (1983) Cerebrospinal fluid absorption. In: Kapp JPet al (eds) The cerebral venous system and its disorders. Grune and Stratton, Orlando, pp 251–274

    Google Scholar 

  23. Shapiro K, Marmarou A, Conway F (1983) Comparison of bolus and constant infusion techniques for determining the resistance of the absorption of CSF. In: Ishi Set al (eds) Intracranial pressure V. Springer, Berlin Heidelberg New York, pp 286–290

    Google Scholar 

  24. Stevenaert A, Godin D, Depresseux JC (1976) Ventriculolumbar perfusion in adult communicating hydrocephalus. In: Beks JWFet al (eds) Intracranial pressure III. Springer, Berlin Heidelberg New York, pp 186–192

    Google Scholar 

  25. Sullivan HG, Miller JD, Griffith RL, Engr D, Carter W, Rucker S (1979) Bolus versus steady-state infusion for determination of CSF outflow resistance. Ann Neurol 5: 228–238

    PubMed  Google Scholar 

  26. Sullivan HG, Seale JR, Beveridge WD, Alien MB, Flanigin HF (1982) Effect of pressure on cerebrospinal fluid absorption in cats, baboons and human: comparison of the linear and logarithmic models. Neurosurgery 10: 210–223

    PubMed  Google Scholar 

  27. Sullivan HG, Griffith RL, Miller JD (1980) Comparison of CSF outflow resistance determined by bolus and steady state techniques. In: Shulmann Ket al (eds) Intracranial pressure IV. Springer, Berlin Heidelberg New York, pp 460–461

    Google Scholar 

  28. Sliwka S (1980) Clinical method of intracranial dynamic parameters investigation. Doctor thesis. Medical Research Centre, Polish Academy of Sciences, Warsaw

    Google Scholar 

  29. Sliwka S, Pawłowski G, Korsak-Sliwka J, Szewczykowski J, Czernicki Z (1984) Computerized infusion test. I. Method. Neurol Neurochir Pol 18: 553–560

    PubMed  Google Scholar 

  30. Tripathi RC (1974) Tracing the bulk outflow rout of cerebrospinal fluid by transmission and scanning electron microscopy. Brain Res 80: 503–506

    PubMed  Google Scholar 

  31. Tychmanowicz K, Uchman G (1990) Cerebral angiography of a cat. Lab Anim 27: 83–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tychmanowicz, K., Czernicki, Z., Pawłowski, G. et al. ICP Dependent changes of CSF outflow resistance. Acta neurochir 117, 44–47 (1992). https://doi.org/10.1007/BF01400634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01400634

Keywords

Navigation