Numerische Mathematik

, Volume 40, Issue 2, pp 207–227 | Cite as

Finite elements for parabolic equations backwards in time

  • W. Höhn
A New Gradient Method for the Simultaneous Calculation of the Smallest or Largest Eigenvalues of the General Eigenvalue Problem


Several regularization methods for parabolic equations backwards in time together with the usual additional constraints for their solution are considered. The error of the regularization is estimated from above and below. For a “boundary value problem in time”-method, finite elements as well as a time discretization are introduced and the error with respect to the regularized solution is estimated, thus giving an overall error of the discrete regularized problem. The algorithm is tested in simple numerical examples.

Subject classifications

AMS(MOS): 65M30 CR: 5.17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, G.A., Bramble, J.H., Thomée, V.: Single Step Galerkin Approximation for Parabolic Problems. Math. Comput.31, 818–847 (1977)Google Scholar
  2. 2.
    Bramble, J.H., Schatz, A.H., Thomée, V., Wahlbin, L.B.: Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations. SIAM J. Numer. Anal.14, 218–241 (1977)Google Scholar
  3. 3.
    Buzbee, B.L., Carasso, A.: On the Numerical Computation of Parabolic Problems for Preceding Times. Math. Comput.27, 237–266 (1973)Google Scholar
  4. 4.
    Eldén, L.: Regularization of the Backward Solution of Parabolic Problems. In: Inverse and Improperly Posed Problems in Differential Equations. Anger, G. (ed.). Berlin: Akademie Verlag, pp. 73–82, 1979Google Scholar
  5. 5.
    Ewing, R.E.: The Approximation of certain Parabolic Equations Backward in Time by Sobolev Equations. SIAM J. Numer. Anal.6, 283–294 (1975)Google Scholar
  6. 6.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs: Prentice Hall, N.Y., 1964Google Scholar
  7. 7.
    Grenacher, F.: Über die Konvergenz bei Regularisierungsalgorithmen. Dissertation, Freiburg, 1976Google Scholar
  8. 8.
    Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. New Haven: Yale University Press, Conn., 1923Google Scholar
  9. 9.
    John, F.: Numerical Solution of the Equation of Heat Conduction for Preceding Times. Ann. Mat. Pura Appl.40, 129–142 (1955)Google Scholar
  10. 10.
    John, F.: Continuous Dependence on Data for Solutions of Partial Differential Equations with a Prescribed Bound. Comm. Pure Appl. Math.13, 551–585 (1960)Google Scholar
  11. 11.
    Lattés, R., Lions, J.: Méthode de Quasi Reversibilité et Applications. Dunod, Paris, 1967Google Scholar
  12. 12.
    Payne, L.E.: Improperly Posed Problems in Partial Differential Equations. Soc. Ind. Appl. Math: Philadelphia, PA, 1975Google Scholar
  13. 13.
    Pucci, C.: Studio col metodo delle differenze de un problema di Cauchy relativo ad equazioni a derivate parziali del secondo ordine di tipo parabolico. Ann. della Scuola Normale Superiore di Pisa7, 205–215 (1953)Google Scholar
  14. 14.
    Varga, R.S.: Matrix Iterative Analysis. Englewood Cliffs: Prentice Hall, N.Y., 1962Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • W. Höhn
    • 1
  1. 1.Fachbereich Mathematik der Technischen Hochschule DarmstadtDarmstadtGermany (Fed. Rep.)

Personalised recommendations