Advertisement

Numerische Mathematik

, Volume 25, Issue 3, pp 251–262 | Cite as

Multiple zeros and applications to optimal linear functionals

  • R. B. Barrar
  • H. L. Loeb
Article

Keywords

Mathematical Method Linear Functional Multiple Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrar, R. B., Loeb, H. L., Werner, H.: On the existence of optimal integration Formulas for analytic functions. Numer. Math.23, 105–117 (1974)Google Scholar
  2. 2.
    Barrar, R. B., Loeb, H. L.: On Extended Varisolvent Families. J. D'Analyse Mathématique26, 243–254 (1973)Google Scholar
  3. 3.
    Barrar, R. B., Loeb, H. L.: On a Nonlinear Characterization Problem for Monosplines. To appear J. Approximation TheoryGoogle Scholar
  4. 4.
    Barrar, R. B., Loeb, H. L.: Analytic Extended Monosplines. Numer. Math.22, 119–125 (1974)Google Scholar
  5. 5.
    Braess, D.: Chebyshev Approximation by γ-Polynomials. J. Approximation Theory9, 20–43 (1973)Google Scholar
  6. 6.
    Braess, D.: Chebyshev Approximation by γ-Polynomials, II. J. Approximation Theory11, 16–37 (1974)Google Scholar
  7. 7.
    Davis, P. J.: Errors of Numerical Approximation for Analytic Functions. J. Rat. Mech. Anal.24, 303–313 (1953)Google Scholar
  8. 8.
    Karlin, S.: On a class of best nonlinear approximation problems. Bull. Amer. Math. Soc.78, 43–49 (1972)Google Scholar
  9. 9.
    Karlin, S.: Total Positivity, Stanford University Press, Stanford 1968Google Scholar
  10. 10.
    Karlin, S.: Best quadrature formulas and splines. J. Approximation Theory4, 59–90 (1971)Google Scholar
  11. 11.
    Richter-Dyn, N.: Properties of Minimal Integration Rules, S.I.A.M. J. Numer. Anal.7, 61–79 (1970)Google Scholar
  12. 12.
    Richter-Dyn, N.: Properties of Minimal Integration Rules, II. S.I.A.M. J. Numer. Anal.8, 497–508 (1971)Google Scholar
  13. 13.
    Sard, A.: Best approximate integration formulas; Best approximation formulas. Amer. J. Math.71, 80–91 (1949)Google Scholar
  14. 14.
    Schoenberg, I. J.: Monosplines and quadrature formulae. In: Theory and Applications of Spline Functions. (Ed. T. N. E. Greville) New York: Academic Press 1969, p. 157–207Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. B. Barrar
    • 1
  • H. L. Loeb
    • 1
  1. 1.Dept. of MathematicsUniv. of OregonEugeneUSA

Personalised recommendations