Advertisement

Numerische Mathematik

, Volume 52, Issue 3, pp 345–364 | Cite as

The convergence of Nyström methods for Wiener-Hopf equations

  • G. A. Chandlen
  • I. G. Graham
Article

Summary

We consider second kind integral equations on the half-line; where the integral operator is a compact perturbation of a convolution operator. It is shown that these may be solved numerically by Nyström methods based on composite quadrature rules. Provided the underlying mesh is graded to correctly match the behaviour of the solution, we prove the same rates of convergence that occur when the methods are applied to equations on finite intervals. Numerical examples are given.

Subject Classifications

AMS(MOS): 65R20 45L10 CR: 5.18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, K.E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Philadelphia: SIAM 1976Google Scholar
  2. 2.
    Atkinson, K.E.: The numerical solution of integral equations on the half-line. SIAM J. Numer. Anal.6, 375–397 (1969)Google Scholar
  3. 3.
    Anselone, P.M.: Collectively compact operator approximation theory. Englewood Cliffs: Prentice-Hall 1971Google Scholar
  4. 4.
    Anselone, P.M., Sloan, I.H.: Integral equations on the half line. J. Integral Equations [Suppl.]9, 3–23 (1985)Google Scholar
  5. 5.
    Baker, C.T.H.: The numerical treatment of integral equations. Oxford: The Clarendon Press 1977Google Scholar
  6. 6.
    Chandler, G.A., Graham, I.G.: Product integration-collocation methods for non-compact integral operator equations. Math. Comput. (to appear)Google Scholar
  7. 7.
    Finn, G.D., Jefferies, J.T.: Studies in spectral line formation. I. Formulation and simple applications. J. Quant. Spectrosc. Radiat. Transfer8, 1675–1703 (1968)Google Scholar
  8. 8.
    Graham, I.G., Chandler, G.A.: High order methods for linear functionals of solutions of second kind integral equations. SIAM J. Numer. Anal. (to appear)Google Scholar
  9. 9.
    Hopf, E.: Mathematical problems of radiative equilibrium. London: Cambridge University Press 1934Google Scholar
  10. 10.
    Kagiwada, H.H., Kalaba, R.: Integral equations via imbedding methods. Reading: Addison-Wesley 1974Google Scholar
  11. 11.
    Noble, B.: Methods based on the Wiener-Hopf technique for the solution of partial differential equations. London: Pergamon 1958Google Scholar
  12. 12.
    Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. Providence: American Mathematical Society 1934Google Scholar
  13. 13.
    Sloan, I.H., Spence, A.: Projection methods for integral equations on the half-line. I.M.A. J. Numer. Anal.6, 153–172 (1986)Google Scholar
  14. 14.
    Sloan, I.H., Spence, A.: Wiener-Hopf integral equations: finite section approximation and projection methods. Constructive Methods for the Practical Treatment of Integral Equations. Hämmerlin, G., Hoffmann, K.-H. (eds.), Internat. Ser. Numer. Maths.; Basel: Birkhäuser 1985Google Scholar
  15. 15.
    Stallybrass, M.P.: A pressurised crack in the form of a cross. Q. J. Mech., Appl. Math.23, 35–48 (1970)Google Scholar
  16. 16.
    Stallybrass, M.P.: A crack perpendicular to an elastic half-plane. Int. J. Eng. Sci.8, 351–362 (1970)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. A. Chandlen
    • 1
  • I. G. Graham
    • 2
  1. 1.Mathematics DepartmentUniversity of QueenslandSt. LuciaAustralia
  2. 2.School of MathematicsUniversity of BathBathUK

Personalised recommendations