Skip to main content
Log in

Electron-phonon interaction in an impure metal

  • Published:
Zeitschrift für Physik

Abstract

On the basis of the existing theory of ultrasonic attenuation, a model Hamiltonian is derived which has to replace the Fröhlich Hamiltonian, at least in an impure metal. Whilst the imaginary part of the phonon self-energy is easily connected with the ultrasonic attenuation constant, the same quantity of the electrons allows no conclusion on inelastic collisions in this case. Therefore, from the linear response function, a kinetic equation for the electrons is derived. It is found that the time between inelastic collisions with phonons increases if impurities are added to the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pippard, A. B.: Phil. Mag.46, 1104 (1955).

    Google Scholar 

  2. Tsuneto, T.: Phys. Rev.121, 402 (1960).

    Google Scholar 

  3. Morse, R. W.: Progress in cryogenics, Vol. I, p. 220, edited by K. Mendelsohn. London: Heywood & Co. Ltd. 1959.

    Google Scholar 

  4. Buckel, W., Hilsch, R.: Z. Physik138, 109 (1954).

    Google Scholar 

  5. Migdal, A. B.: J. Exp. Theoret. Phys.34, 1438 (1958) [Engl. transl. in: Soviet Phys. — JETP7, 996 (1958)].

    Google Scholar 

  6. Fröhlich, H.: Phys. Rev.79, 845 (1950). In an explicit form, this Hamiltonian is found for instance, in the paper of Migdal [5], and in §9 of Ref. [10].

    Google Scholar 

  7. See, for instance: Ziman, J.: Electrons and phonons. Ch. V. Oxford: At the Clarendon Press 1960.

    Google Scholar 

  8. Batyev, E. G., Pokrovskii, V. L.: J. Exp. Theoret. Phys.46, 262 (1964) [Engl. transl. in: Soviet Phys.-JETP19, 181 (1964)].

    Google Scholar 

  9. Kadanoff, L. P., Falko, I. I.: Phys. Rev.136, A1170 (1964).

    Google Scholar 

  10. Abrikosov, A. A., Gorkov, L. P., Dzyaloshinski, I. Ye.: Quantum field theoretical methods in statistical physics. Oxford: Pergamon Press 1965.

    Google Scholar 

  11. Baym, G.: Phys. Rev.127, 1391 (1962).

    Google Scholar 

  12. See § 7 of Ref. [10].

    Google Scholar 

  13. See § 39 of Ref. [10].

    Google Scholar 

  14. See the discussion in § 21 of Ref. [10].

    Google Scholar 

  15. Prange, R. E., Kadanoff, L. P.: Phys. Rev.134, A566 (1964).

    Google Scholar 

  16. Gorkov, L. P., Eliashberg, G. M.: J. Exp. Theoret. Phys.54, 612 (1968) [Engl. transl, in Soviet Phys.-JETP27, 328 (1968)].

    Google Scholar 

  17. Scalapino, D. J.: Superconductivity; R. D. Parks, ed. Ch. 10. New York: M. Dekker, Inc. 1969.

    Google Scholar 

  18. Bloch, F.: Z. Physik52, 555 (1928).

    Google Scholar 

  19. Gray, K. E., Long, A. R., Adkins, C. J.: Phil. Mag.20, 273 (1969).

    Google Scholar 

  20. Kinder, H.: J. Phys. Radium, Suppl.33, C4–21 (1972).

    Google Scholar 

  21. Koshino, S.: Prog. Theor. Phys.24, 484 (1960);24,1049 (1960).

    Google Scholar 

  22. Bergmann, G.: Phys. Rev.3B, 3797.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, A. Electron-phonon interaction in an impure metal. Z. Physik 259, 421–436 (1973). https://doi.org/10.1007/BF01397378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01397378

Keywords

Navigation