Numerische Mathematik

, Volume 50, Issue 4, pp 377–404 | Cite as

The analysis of a nested dissection algorithm

  • John R. Gilbert
  • Robert Endre Tarjan
Convergence of the SSOR Method for Nonlinear Systems of Simultaneous Equations


Nested dissection is an algorithm invented by Alan George for preserving sparsity in Gaussian elimination on symmetric positive definite matrices. Nested dissection can be viewed as a recursive divide-and-conquer algorithm on an undirected graph; it usesseparators in the graph, which are small sets of vertices whose removal divides the graph approximately in half. George and Liu gave an implementation of nested dissection that used a heuristic to find separators. Lipton and Tarjan gave an algorithm to findn1/2-separators in planar graphs and two-dimensional finite element graphs, and Lipton, Rose, and Tarjan used these separators in a modified version of nested dissection, guaranteeing bounds ofO (n logn) on fill andO(n3/2) on operation count. We analyze the combination of the original George-Liu nested dissection algorithm and the Lipton-Tarjan planar separator algorithm. This combination is interesting because it is easier to implement than the Lipton-Rose-Tarjan version, especially in the framework of existïng sparse matrix software. Using some topological graph theory, we proveO(n logn) fill andO(n3/2) operation count bounds for planar graphs, twodimensional finite element graphs, graphs of bounded genus, and graphs of bounded degree withn1/2-separators. For planar and finite element graphs, the leading constant factor is smaller than that in the Lipton-Rose-Tarjan analysis. We also construct a class of graphs withn1/2-separators for which our algorithm does not achieve anO(n logn) bound on fill.

Subject Classifications

AMS(MOS) 05C10 65F05 65F50 CR G.1.3 G.2.2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Djidjev, H.N.: On the problem of partitioning planar graphs. SIAM J. Algebraic Discrete Methods3, 229–240 (1982)Google Scholar
  2. 2.
    George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.10, 345–363 (1973)Google Scholar
  3. 3.
    George, A., Liu, J.W.-H.: An automatic neste dissection algorithm for irregular finite element problems. SIAM J. Numer. Anal.15, 1053–1069 (1978)Google Scholar
  4. 4.
    George, A., Liu, J.W.-H.: Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, NJ: Prentice-Hall 1981Google Scholar
  5. 5.
    Gilbert, J.R.: Graph Separator Theorems and Sparse Gaussian Elimination. Ph.D. thesis, Stanford University 1980Google Scholar
  6. 6.
    Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of bounded genus. J. Algorithms5, 391–407 (1984)Google Scholar
  7. 7.
    Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Algebraic Discrete Methods5, 306–313 (1984)Google Scholar
  8. 8.
    Gilbert, J.R., Schreiber, R.: Nested dissection with partial pivoting. Sparse Matrix Symposium. Fairfield Glade, Tennessee 1982Google Scholar
  9. 9.
    Harary, F.: Graph Theory. Reading, MA: Addison-Wesley 1969Google Scholar
  10. 10.
    Hoey, D., Leiserson, C.E.: A layout for the shuffle-exchange network. Carnegie-Mellon University Computer Science Department technical report CMU-CS-80-139 (1980)Google Scholar
  11. 11.
    Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math.70, 185–190 (1869)Google Scholar
  12. 12.
    Leighton, F.T.: A layout strategy for VLSI which is provably good. Proc. 14th Ann. ACM Symp. Theory Comput. pp. 85–98 (1982)Google Scholar
  13. 13.
    Leiserson, C.E.: Area-efficient graph layouts (for VLSI). Proc. 21st Ann. Symp. Found. Comput. Sci. pp. 270–281 (1980)Google Scholar
  14. 14.
    Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Numer. Anal.16, 346–358 (1979)Google Scholar
  15. 15.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math.36, 177–189 (1979)Google Scholar
  16. 16.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. Proc. 16th Ann. ACM Symp. Theory Comput. pp. 376–382 (1984)Google Scholar
  17. 17.
    Nash-Williams, C.St.J.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc.39, 12 (1964)Google Scholar
  18. 18.
    Parter, S.: The use of linear graphs in Gauss elimination. SIAM Rev.3, 119–130 (1961)Google Scholar
  19. 19.
    Roman, J.: Calculs de complexité relatifs à une méthode de dissection emboîtée. Numer. Math.47, 175–190 (1985)Google Scholar
  20. 20.
    Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph Theory and Computing (R.C. Read, ed.), pp. 183–217. New York: Academic Press 1972Google Scholar
  21. 21.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput.5, 266–283 (1976)Google Scholar
  22. 22.
    Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic Discrete Methods2, 77–79 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • John R. Gilbert
    • 1
  • Robert Endre Tarjan
    • 2
  1. 1.Computer Science DepartmentCornell UniversityIthacaUSA
  2. 2.Computer Science DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations