Skip to main content
Log in

Nonconforming finite element methods for eigenvalue problems in linear plate theory

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The paper deals with nonconforming finite element methods for approximating fourth order eigenvalue problems of typeΔ 2 w=λΔw. The methods are handled within an abstract Hilbert space framework which is a special case of the discrete approximation schemes introduced by Stummel and Grigorieff. This leads to qualitative spectral convergence under rather weak conditions guaranteeing the basic properties of consistency and discrete compactness for the nonconforming methods. Further asymptotic error estimates for eigenvalues and eigenfunctions are derived in terms of the given orders of approximability and nonconformity. These results can be applied to various nonconforming finite elements used by Adini, Morley, Zienkiewicz, de Veubeke e.a. This is carried out for the simple elements of Adini and Morley and is illustrated by some numerical results at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramble, J.H., Osborn, J.E.: Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp.27, 525–549 (1973)

    Google Scholar 

  2. Ciarlet, P.G.: Conforming and nonconforming finite element methods for solving the plate problem. In: Conference on the Numerical Solution of Differential Equations (G.A. Watson, ed.), pp. 21–31. Berlin: Springer 1974

    Google Scholar 

  3. Grigorieff, R.D.: Diskrete Approximation von Eigenwertproblemen. Numer. Math.24, 355–374, 415–433 (1975)

    Google Scholar 

  4. Kondratiev, V.: Boundary value problems for elliptic equations with conical or angular points. Trans. Moscow Math. Soc.16, 227–313 (1967)

    Google Scholar 

  5. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. R.A.I.R.O.9, R-1, 9–53 (1975)

    Google Scholar 

  6. Melzer, H.: Approximation von Eigenfrequenzen und kritischen Lasten dünner Platten mit Hilfe konformer und nicht konformer finiter Elemente. Diplomarbeit, Universität Bonn 1978

  7. Nitsche, J.: Convergence of nonconforming methods. In: Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, ed.), pp. 15–53. New York: Academic Press 1974

    Google Scholar 

  8. Osborn, J.E.: Spectral approximation for compact operators. Math. Comp.29, 712–725 (1975)

    Google Scholar 

  9. Rannacher, R.: Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math.19, 401–416 (1976)

    Google Scholar 

  10. Rannacher, R.: Finite element approximation of simply supported plates and the Babuška paradox. Z. Angew. Math. Mech.59, 73–76 (1979)

    Google Scholar 

  11. Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems — The linear case-. To appear in: R.A.I.R.O. Sér. Rouge Anal. Numér.

  12. Strang, G.: Approximation in the finite element method. Numer. Math.19, 81–98 (1972)

    Google Scholar 

  13. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall 1973

    Google Scholar 

  14. Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Ann.190, 45–92 (1970). II. Math. Z.120, 231–264 (1971)

    Google Scholar 

  15. Stummel, F.: Remarks concerning the patch test for nonconforming finite elements. Z. Angew. Math. Mech.58, 124–126 (1978)

    Google Scholar 

  16. Stummel, F.: The generalized patch test. SIAM J. Numer. Anal.16, 449–471 (1979)

    Google Scholar 

  17. Timoshenko, S., Woinowski-Krieger, S.: Theory of Plates and Shells. London: McGraw-Hill 1959

    Google Scholar 

  18. Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. London: McGraw-Hill 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannacher, R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979). https://doi.org/10.1007/BF01396493

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396493

Subject Classification

Navigation