Abstract
The paper deals with nonconforming finite element methods for approximating fourth order eigenvalue problems of typeΔ 2 w=λΔw. The methods are handled within an abstract Hilbert space framework which is a special case of the discrete approximation schemes introduced by Stummel and Grigorieff. This leads to qualitative spectral convergence under rather weak conditions guaranteeing the basic properties of consistency and discrete compactness for the nonconforming methods. Further asymptotic error estimates for eigenvalues and eigenfunctions are derived in terms of the given orders of approximability and nonconformity. These results can be applied to various nonconforming finite elements used by Adini, Morley, Zienkiewicz, de Veubeke e.a. This is carried out for the simple elements of Adini and Morley and is illustrated by some numerical results at the end.
Similar content being viewed by others
References
Bramble, J.H., Osborn, J.E.: Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. Comp.27, 525–549 (1973)
Ciarlet, P.G.: Conforming and nonconforming finite element methods for solving the plate problem. In: Conference on the Numerical Solution of Differential Equations (G.A. Watson, ed.), pp. 21–31. Berlin: Springer 1974
Grigorieff, R.D.: Diskrete Approximation von Eigenwertproblemen. Numer. Math.24, 355–374, 415–433 (1975)
Kondratiev, V.: Boundary value problems for elliptic equations with conical or angular points. Trans. Moscow Math. Soc.16, 227–313 (1967)
Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. R.A.I.R.O.9, R-1, 9–53 (1975)
Melzer, H.: Approximation von Eigenfrequenzen und kritischen Lasten dünner Platten mit Hilfe konformer und nicht konformer finiter Elemente. Diplomarbeit, Universität Bonn 1978
Nitsche, J.: Convergence of nonconforming methods. In: Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor, ed.), pp. 15–53. New York: Academic Press 1974
Osborn, J.E.: Spectral approximation for compact operators. Math. Comp.29, 712–725 (1975)
Rannacher, R.: Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem. Manuscripta Math.19, 401–416 (1976)
Rannacher, R.: Finite element approximation of simply supported plates and the Babuška paradox. Z. Angew. Math. Mech.59, 73–76 (1979)
Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems — The linear case-. To appear in: R.A.I.R.O. Sér. Rouge Anal. Numér.
Strang, G.: Approximation in the finite element method. Numer. Math.19, 81–98 (1972)
Strang, G., Fix, G.: An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall 1973
Stummel, F.: Diskrete Konvergenz linearer Operatoren. I. Math. Ann.190, 45–92 (1970). II. Math. Z.120, 231–264 (1971)
Stummel, F.: Remarks concerning the patch test for nonconforming finite elements. Z. Angew. Math. Mech.58, 124–126 (1978)
Stummel, F.: The generalized patch test. SIAM J. Numer. Anal.16, 449–471 (1979)
Timoshenko, S., Woinowski-Krieger, S.: Theory of Plates and Shells. London: McGraw-Hill 1959
Zienkiewicz, O.C.: The Finite Element Method in Engineering Science. London: McGraw-Hill 1971
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rannacher, R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979). https://doi.org/10.1007/BF01396493
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01396493