Advertisement

Numerische Mathematik

, Volume 54, Issue 5, pp 533–542 | Cite as

A discrete solenoidal finite difference scheme for the numerical approximation of incompressible flows

  • Manfred Dobrowolski
Article
  • 53 Downloads

Summary

For a well known class of finite difference schemes for approximating incompressible flows it is shown that the condition of discrete incompressibility can be incorporated into the discrete space. This simplifies the structure of the linear or nonlinear discrete systems and reduces the number of unknowns.

Subject Classifications

AMS(MOS):65N99, 76D05 CR:G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berge, C.: Graphes et hypergraphes. 1th Ed. Paris: Dunod 1970Google Scholar
  2. 2.
    Bulgarelli, U., Casulli, V., Greenspan, D.: Pressure methods for the numerical solution of free surface fluid flows. Swansea, U.K.:, Pineridge Press 1984Google Scholar
  3. 3.
    Bulgarelli, U., Casulli, V., Rosati, M.: Numerical stability for the solution of Navier Stokes and Euler equations. In: Boffi, V., Neunzert, H. (eds.). Proceedings of the German-Italian Symposium Applications of Mathematics in Technology, pp. 263–287. Stuttgart: Teubner 1984Google Scholar
  4. 4.
    Dobrowolski, M., Thomas, K.: On the use of discrete solenoidal finite elements for approximating the Navier-Stokes equation. In: Boffi, V., Neunzert, H., (eds.). Proceedings of the German-Italian Symposium Applications of Mathematics in Technology, pp. 246–262. Stuttgart: Teubner 1984Google Scholar
  5. 5.
    Hecht, F.: Construction of a basis at free divergence in finite elements and application to the Navier-Stokes equations. Numerical solutions of nonlinear problems. France-Italy-URRS 6th Joint Symp. INRIA, Rocquencourt/France 1983, 284–297 (1984)Google Scholar
  6. 6.
    Hughes, T.J.R., Lin, W.K., Brooks, A.: Review of finite element analysis of incompressible viscous flows by the penalty function formulation. J. Comput. Phys.30, 1–60 (1979)Google Scholar
  7. 7.
    Lin, N.S.: Finite difference solution of the Navier-Stokes equations for incompressible three dimensional internal flows. In: Vooren-Zandberg, van de (ed.). Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics59, 300–306. Heidelberg Berlin New York: Springer 1982Google Scholar
  8. 8.
    Paul, V., Lewis, E.: Application of the multigrid technique to the pressure-correction equation for the simple algorithm. In: Trottenberg, U., Hackbusch, W. (eds.). Second European Conference on Multigrid Methods, Cologne 1985, GMD-Studien Nr. 120, pp. 121–142. St. Augustin: Gesellschaft für Mathematik und Datenverarbeitung 1987Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Manfred Dobrowolski
    • 1
  1. 1.Institut für Angewandte MathematikErlangenFederal Republic of Germany

Personalised recommendations