Advertisement

Numerische Mathematik

, Volume 62, Issue 1, pp 321–341 | Cite as

Deterioration of a finite element method for arch structures when the thickness goes to zero

  • A. Habbal
  • D. Chenais
Article

Summary

In this paper, we establish that a popular finite element method for arch structures degenerates when the thickness tends to zero. This is due to the fact that, for null thickness, the energy functional looses the ellipticity property. We show then how to link the step size to the thickness in order to get required precision. Numerical results finally illustrate the theoretical analysis.

Mathematics Subject Classifikation (1991)

65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N. (1981): Discretization by finite elements of a model parameter dependent problem. Numer. Math.37, 405–421Google Scholar
  2. 2.
    Bernadou, M., Ducatel, Y. (1982): Approximation of general arch problems by straight beam elements. Numer. Math.40, 1–29Google Scholar
  3. 3.
    Brezis, H. (1983): Analyse fonctionnelle—théorie et applications. Collection Mathématique appliquées pour la Maîtrise. Masson, ParisGoogle Scholar
  4. 4.
    Chenais, D., Rousselet, Benedict (1988): Design sensitivity for arch structures. J. Optimization Theory Appl58, 225–239Google Scholar
  5. 5.
    Ciarlet, P. (1980): The Finite Element Method for Elliptic Problems. North-Holland, AmsterdamGoogle Scholar
  6. 6.
    Hughes, T.J.R., Taylor, R.L., Kanoknukulchai, W. (1977): A simple and efficient finite element for plate bending. Int. J. Numer. Methods Eng.11, 1529–1543Google Scholar
  7. 7.
    Kikuchi, F. (1982): Accuracy of some finite element models for arch problems. Comput. Methods Appl. Mech. Eng.35, 315–345Google Scholar
  8. 8.
    Reedy, B.D. (1988): Convergence of mixed finite element approximations for the shallow arch problem. Numer. Math.53, 687–699Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Habbal
    • 1
  • D. Chenais
    • 1
  1. 1.Laboratoire de MathématiquesUniversité de NiceNice CedexFrance

Personalised recommendations