Advertisement

Numerische Mathematik

, Volume 62, Issue 1, pp 161–188 | Cite as

Analyse d'un élément mixte pour le problème de Stokes

II. Construction et estimations d'erreur
  • M. Fortin
  • Z. Mghazli
Article

Résumé

Nous construisons un élément fini mixte pour le problème de Stokes. Cet élément est non conforme. Nous appliquons les résultats de la Partie I pour obtenir des estimations d'erreur optimales. Nous considérons aussi le traitement des conditions de raccords par des multiplicateurs de Lagrange et nous montrons que ces multiplicateurs peuvent être utilisés pour construire une approximation superconvergente.

Analysis of a mixed finite element for the Stokes problem

II. Construction and error estimates

Summary

We build a mixed finite element method for the Stokes problem. This method is nonconforming. We apply the results of Part I to prove convergence and obtain optimal error estimates. We also consider the treatment of interface conditions by multipliers and show that a superconvergent approximation can be built from those multipliers.

Mathematics Subject Classification (1991)

65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Amara, M., Thomas, J.M. (1979): Equilibrium finite elements for the linear elastic problem. Numer. Math.33, 367–383CrossRefGoogle Scholar
  2. Arnold, D.N., Brezzi, F. (1985): Mixed and Nonconforming Finite Element Methods Implementation, Postprocessing and Error Estimates. R.A.I.R.O., Modélisation Math. Anal. Numér.19, 7–32Google Scholar
  3. Babuśka, I. (1973): The Finite Element Method with Lagrange Multipliers. Numer. Math.,20, 179–192Google Scholar
  4. Babuśka, I., Osborn, J., Pitkaranta, J. (1980): Analysis of Mixed Methods Using Mesh Dependent Norms. Math. Comput.35, 1039–1062Google Scholar
  5. Bernardi, C. (1986): Contributions à l'analyse numérique de problèmes non-linéaires. Thèse d'Etat, Université Pierre et Marie Curie, ParisGoogle Scholar
  6. Brezzi, F. (1974): On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers. R.A.I.R.O.8, 129–151Google Scholar
  7. Brezzi, F., Douglas Jr., J., Marini, L.D. (1985): Two Families of Mixed Finite Elements for Second Order Elliptic Problems. Numer. Math.47, 217–435Google Scholar
  8. Brezzi, F., Fortin, M. (1991): Mixed and Hybrid Finite Element Methods. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  9. Brezzi, F., Raviart, P.A. (1976): Mixed Finite Element Methods for 4th Order Elliptic Equations. Proc. Royal Irish Academy Conference on Numerical AnalysisGoogle Scholar
  10. Ciarlet, P.G., Raviart, P.A. (1974): A Mixed Finite Element Method for the Biharmonic Equation. Symposium on Mathematical Aspects of Finite Element in Partial Differential Equations, C. de Boor, ed., pp. 125–145. Academic Press, New YorkGoogle Scholar
  11. Comodi, L. (1989): The Hellan-Herrmann-Johnson Method: Error Estimates for the Lagrange Multipliers and Postprocessing. Math. Comput.52, 17–30Google Scholar
  12. Crouzeix, M., Raviart, P.A. (1973): Conforming and Non-conforming Finite Element Methods for Solving the Stationary Stokes Equations. R.A.I.R.O., Anal. Numér.7, 33–76Google Scholar
  13. Fortin, M. (1977): An Analysis of the Convergence Mixed Finite Element Methods. R.A.I.R.O., Anal. Numér.11, 341–354Google Scholar
  14. Fortin, M., Soulié, M. (1983): A non-conforming piecewise quadratic finite element on triangles. Int. J. Numer. Meth. Eng.19, 505–520Google Scholar
  15. Girault, V., Raviart, P.A. (1979): An Analysis of a Mixed Finite Element Method for the Navier-Stokes Equations. Numer. Math.33, 235–271CrossRefGoogle Scholar
  16. Herrmann, K. (1967): Finite Element Bending Analysis for Plates. J. Eng. Mech. Div. ASCE,A3, EM593, 49–83Google Scholar
  17. Johnson, C. (1973): On the Convergence of a Mixed Finite Element Method for Plate Bending Problems. Numer. Math.21, 43–62Google Scholar
  18. Johnson, C., Mercier, B. (1978): Some Equilibrium Finite Element Methods for Two-Dimensional Elasticity Problems. Numer. Math.30, 103–116Google Scholar
  19. Johnson, C., Mercier, B. (1979): Some Equilibrium Finite Element Methods for Two-Dimensional Problems in continuum Mechanics. In: Glowinski, Rodin, Zienkiewitz, eds., Energy methods in finite element analysis. Wiley, New YorkGoogle Scholar
  20. Mghazli, Z. (1987): Une méthode mixte pour les problèmes d'hydrodynamique. Thèse de doctorat, Université de MontréalGoogle Scholar
  21. Miyoshi, T. (1973): A Finite Element Method for the Solution of Fourth Order Partial Differential Equations. Kamanoto J. Sci. (Math.)9, 87–116Google Scholar
  22. Raviart, P.A., Thomas, J.M. (1977): A Mixed Finite Element Method for 2nd Order Elliptic Problems. Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics606. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Thomas, J.M. (1977): Sur l'analyse numérique de méthode d'éléments finis hybrides et mixtes. Thèse, Université Pierre et Marie Curie, ParisGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Fortin
    • 2
  • Z. Mghazli
    • 1
    • 2
  1. 1.Département de MathématiquesUniversité LavalQuébecCanada
  2. 2.Département de Mathématiques et Informatiques, Faculté des SciencesUniversité Ibn TofaïlKénitraMaroc

Personalised recommendations