Advertisement

Numerische Mathematik

, Volume 52, Issue 6, pp 701–723 | Cite as

Estimates for multigrid methods based on red-black Gauss-Seidel smoothings

  • Seymour V. Parter
Article

Summary

TheMGR[v] algorithms of Ries, Trottenberg and Winter, the Algorithms 2.1 and 6.1 of Braess and the Algorithm 4.1 of Verfürth are all multigrid algorithms for the solution of the discrete Poisson equation (with Dirichlet boundary conditions) based on red-black Gauss-Seidel smoothing. Both Braess and Verfürth give explicit numerical upper bounds on the rate of convergence of their methods in convex polygonal domains. In this work we reconsider these problems and obtain improved estimates for theh−2h Algorithm 4.1 as well asW-cycle estimates for both schemes in non-convex polygonal domains. The proofs do not depend on the strengthened Cauchy inequality.

Subject Classifications

AMS(MOS): 65 N 20 CR: G 1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, R., Douglas, C.C.: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal.22, 617–633 (1985)Google Scholar
  2. 2.
    Braess, D.: The contraction number of a multigrid method for solving the Poisson equation. Numer. Math.37, 387–404 (1981)Google Scholar
  3. 3.
    Braess, D.: The convergence rate of a multigrid method with Gauss-Seidel relaxation for the Poisson equation. Math. Comput.42, 505–519 (1984)Google Scholar
  4. 4.
    Braess, D., Hackbusch, W.: A new convergence proof for the multigrid method including the V-cycle. SIAM J. Numer. Anal.20, 967–975 (1983)Google Scholar
  5. 5.
    Kamowitz, D., Parter, S.V.: Multigrid andMGR[v] methods, for Diffusion Equations, Computer Science Technical Report no. 577. Appl. Math. Comput.17, 153–184 (1985)Google Scholar
  6. 6.
    Maitre, J.-F., Musy, E.: Multigrid methods for symmetric variational problems: A general theory and convergence estimates for usual smoothers. Appl. Math. Comput.21, 21–43 (1987)Google Scholar
  7. 7.
    McCormick, S., Ruge, J.: Multigrid methods for variational problems. SIAM J. Numer. Anal.19, 924–929 (1982)Google Scholar
  8. 8.
    McCormick, S.: Multigrid methods for variational problems: Further results. SIAM J. Numer. Anal.21, 255–263 (1984)Google Scholar
  9. 9.
    McCormick, S.: Multigrid methods for variational problems: General theory. SIAM J. Numer. Anal.22, 634–643 (1985)Google Scholar
  10. 10.
    Parter, S.V.: Remarks on Multigrid Convergence Theorems. Computer Sciences Technical Report no. 634. Appl. Math. Comput.23, 103–120 (1987)Google Scholar
  11. 11.
    Parter, S.V.: On an Estimate for the Three-Grid MGR Multigrid Method. Computer Sciences Technical Report no. 610. SIAM J. Numer. Anal.24, 1032–1045 (1987)Google Scholar
  12. 12.
    Ries, M., Trottenberg, U., Winter, G.: A note on MGR methods. Linear Algebra Appl.49, 1–26 (1983)Google Scholar
  13. 13.
    Stüben, K.:MGϕ1: A multi-grid program to solve ΔU−c(x, y)U=f(x, y) on Ω,U=g(x, y) on ∂Ω, on nonrectangular bounded domains Ω. IMA-Report: 82.02.02 Gesellschaft für Mathematik and Datenverarbeitung MBH, Bonn 1982Google Scholar
  14. 14.
    Verfürth, R.: The contraction number of a multigrid method with mesh ratio 2 for solving Poisson's equation. Linear Algebra Appl.60, 113–128 (1984)Google Scholar
  15. 15.
    Yserentant, H.: On the convergence of multi-level methods for strongly nonuniform families of grids and any number of smoothing steps per level. Computing30, 305–313 (1983)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Seymour V. Parter
    • 1
  1. 1.Computer Science DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations