Skip to main content
Log in

A structured model for the kinetics of fungal amylase production

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Summary

The cell is considered to be divided into nucleic acids, proteinaceous material and storage compounds. The enzyme is believed to be constitutive but repressed by the rate of catabolism. A structured model is developed to describe the growth, amylase production and dissolved oxygen profile in the batch culture ofAspergillus oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CA:

Conc. of enzyme SKB units/m3

CD,CE,CG,CO,CS :

Conc. of D.E.G. mass, oxygen, substrate kg/m3

CO*:

Mean oxygen conc. in gas-liquid interface kg/m3

CX :

Total cell conc. kg/m3

D:

D-mass (proteins) kg

E:

E-mass (storage carbon) kg

G:

G-mass (necleic acids) kg

KE :

Rate of usage of E-mass kg/m3/h

KEO :

KE with oxygen limitation kg/m3/h

Q:

Active fraction of promotor genes -

RD,RE,RG :

Rate of production of D,E,G-mass kg/m3/h

RO,RS :

Rate of usage of oxygen, substrate kg/m3/h

RDO,REO,RGO :

RD,RE and RG with oxygen limitation kg/m3/h

S:

Substrate (carbon) concentration kg/m3

t:

Time h

to :

Time at which CS = 0 h

K1,K2,K3,K24,K25 :

Stoichiometric constants -

K4,K5,K6,K7 :

Rate constants h−1

K8-K12,K18,K20-K23 :

Michaelis-Menten constants kg/m3

K26,K26 :

Absorption coefficient, K26 at CX = 0 h−1

K27 :

Empirical constant kg/m3

K15 :

Rate of enzyme formation SKB units/kg

K16,K17 :

Equilibrium constants m3/kg

K19 :

Decay constant for mRNA h−1

References

  • Caspersson, T. (1947)Symp. Soc. Exper. Biol. No. 1, Cambridge: University Press.

    Google Scholar 

  • Emmer, M., de Crombruggle, B., de Crombruggle, B., Pastan, I. and Perlman, R., (1970)Proc. Nat. Acad. Sci. 66, 480–487.

    PubMed  Google Scholar 

  • Enatsu, T. and Shinmyo, A. (1978)Adv. Biochem. Eng. 9, 111–144.

    Google Scholar 

  • Fitzpatrick, S.W. (1977), Ph.D. Thesis, U.M.I.S.T.

  • Gale, E. and Folkes, J.P. (1953)Biochem. J. 53, 483–492.

    PubMed  Google Scholar 

  • Herbert, D. (1958) inRecent progress in microbiology, G. Tunesall ed. 381–396 Oxford: Blackwell.

    Google Scholar 

  • Imanaka, T. and Aiba, S. (1977)Biotechnol. Bioeng. 19,757–764.

    PubMed  Google Scholar 

  • Inkson, M.B. (1972) Ph.D. Thesis, U.M.I.S.T.

  • Meyrath, J. and Volavsek, G. (1975) inEnzymes in food processing, 2nd Edition. G. Reed ed. 255–300, New York and London: Academic Press.

    Google Scholar 

  • Ramkrishna, D., Fredrickson, A.G. and Tsuchiya H.M. (1967)Biotechnol. Bioeng. 9, 129–170.

    Google Scholar 

  • Ryder, D.N. and Sinclair, C.G. (1972)Biotechnol. Bioeng. 14, 787–798.

    PubMed  Google Scholar 

  • Terui, G., Okazaki, M. and Kinochita, S. (1967),J.Ferment.Technol. 45, 497–503.

    Google Scholar 

  • van Dedem, G. and Moo-Young, M. (1973)Biotechnol, Bioeng. 15, 419–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.E., Fitzpatrick, S.W. A structured model for the kinetics of fungal amylase production. Biotechnol Lett 1, 3–8 (1979). https://doi.org/10.1007/BF01395782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395782

Navigation