Skip to main content
Log in

The measure of non-normal sets

  • Published:
Inventiones mathematicae Aims and scope

Summary

It is well-known that almost every number in [0, 1] is normal in base 2, in the sense of Lebesgue measure. Kahane and Salem asked whether the same is true with respect to any Borel measure whose Fourier-Stieltjes coefficients vanish at infinity — in other words, whether the set of non-normal numbers is a set of uniqueness in the wide sense. We show that this is not the case. In fact, we give “best-possible” conditions on the rate of decay of\(\hat \mu (n)\) in order that μ-almost every number be normal. The techniques include, on the one hand, probability measures with respect to which the binary digits in [0, 1] are independent only by blocks, rather than individually, and on the other hand, the strong law of large numbers for weakly correlated random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.C.: A diophantine problem on groups. III. Proc. Camb. Phil. Soc.70, 31–47 (1971)

    Google Scholar 

  2. Baker, R.C.: A diophantine problem on groups. IV. Ill. J. Math.18, 552–564 (1974)

    Google Scholar 

  3. Billingsley, P.: Probability and measure. New York: Wiley 1979

    Google Scholar 

  4. Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo27, 247–271 (1909)

    Google Scholar 

  5. Erdös, P., Taylor, S.J.: On the set of points of convergence of a lacunary trigonometric series and the equidistribution properties of related sequences. Proc. Lond. Math. Soc.7, 598–615 (1957)

    Google Scholar 

  6. Graham, C.C., McGehee, O.C.: Essays in commutative harmonic analysis. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  7. Kahane, J.-P.: Sur les mauvaises répartitions modulo 1. Ann. Inst. Fourier14, 519–526 (1964)

    Google Scholar 

  8. Kahane, J.-P., Salem, R.: Distribution modulo 1 and sets of uniqueness. Bull. Am. Math. Soc.70, 259–261 (1964)

    Google Scholar 

  9. Katznelson, Y.: An introduction to harmonic analysis. Second corrected edition. New York: Dover 1976

    Google Scholar 

  10. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: Wiley 1974

    Google Scholar 

  11. Loève, M.: Probability theory. Fourth ed. Vol. II. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  12. Lyons, R.: A characterization of measures whose Fourier-Stieltjes transforms vanish at infinity. Thesis, University of Michigan 1983

  13. Lyons, R.: Characterizations of measures whose Fourier-Stieltjes transforms vanish at infinity. Bull. Am. Math. Soc.10, 93–96 (1984)

    Google Scholar 

  14. Lyons, R.: La mesure des ensembles non-normaux. Séminaire de Théorie des nombres de Bordeaux. Univ. Bordeaux (France), 1983–84, pp 13–01 to 13–08

  15. Lyons, R.: Fourier-Stieltjes coefficients and asymptotic distribution modulo 1. Ann. Math.122, 155–170 (1985)

    Google Scholar 

  16. Lyons, R.: The size of some classes of thin sets (Preprint 1984)

  17. Rauzy, G.: Caractérisation des ensembles normaux. Bull. Soc. Math. Fr.98, 401–414 (1970)

    Google Scholar 

  18. Révész, P.: The laws of large numbers. New York: Academic Press 1968

    Google Scholar 

  19. Šalát, T.: A remark on normal numbers. Rev. Roum. Math. Pure Appl.11, 53–56 (1966)

    Google Scholar 

  20. Weyl, H.: Über ein Problem aus dem Gebiete der diophantischen Approximationen. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse (1914), 234–244. Also in „Gesammelte Abhandlungen”,1, pp 487–497. Berlin-Heidelberg-New York: Springer 1968

  21. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.77, 313–352 (1916). Also in „Gesammelte Abhandlungen”,1, pp 563–599. Berlin-Heidelberg-New York: Springer 1968

    Google Scholar 

  22. Zygmund, A.: Trigonometric series. Second ed. reprinted. Vol. 1. Cambridge: Cambridge University Press 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by an NSF Graduate Fellowship, NSF Grant MCS-82-01602, and an AMS Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, R. The measure of non-normal sets. Invent Math 83, 605–616 (1986). https://doi.org/10.1007/BF01394426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01394426

Keywords

Navigation