Abstract
IfA andB are two bounded domains in ℝ n and λ(A), λ(B) are the lowest eigenvalues of −Δ with Dirichlet boundary conditions then there is some translate,B x, ofB such that λ(A∩B x)<λ(A)+λ(B). A similar inequality holds for\(\lambda _p (A) = \inf \{ \parallel \nabla f\parallel _p^p /\parallel f\parallel _p^p |f \in W_0^{1,p} (A)\} \).There are two corollaries of this theorem: (i) A lower bound for sup x {volume (A∩B x)} in terms of λ(A), whenB is a ball; (ii) A compactness lemma for certain sequences inW 1,p(ℝ n ).
Similar content being viewed by others
References
Brascamp, H.J., Lieb, E.H.: Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma. In: Functional Integration and its Applications, Arthurs, A.M. (ed.) pp. 1–14. Oxford: Clarendon Press 1975
Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis, a Symposium in Honor of Salomon Bochner, Gunning, R.C. (ed.) pp. 145–199. Princeton, N.J.: Princeton University Press 1970
Cheng, S.Y.: On the Hayman-Osserman-Taylor inequality, (preprint).
Croke, C.B.: The first eigenvalue of the Laplacian for plane domains. Proc. Amer. Math. Soc.81, 304–305 (1981)
Faber, C.: Beweis das unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. der Wiss. Math. Phys., Munich 1923, pp. 169–172
Hayman, W.K.: Some bounds for principle frequency. Applic. Anal.7, 247–254 (1977/1978)
Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann.94, 97–100 (1925)
Osserman, R.: A note on Hayman's theorem on the bass note of a drum. Comment. Math. Helv.52, 545–555 (1977)
Osserman, R.: The isoperimetric inequality, Bull. Amer. Math. Soc.84, 1182–1238 (1978)
Osserman, R.: Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly86, 1–29 (1979)
Taylor, M.: Estimate on the fundamental frequency of a drum. Duke Math. J.46, 447–453 (1979)
Yau, S.T.: Isoperimetric constants and the first eigenvalue of a compact manifold. Ann. Sci. Ecolo Norm. Sup.8, 487–507 (1975)
Lieb, E.H.: Some vector field equations. In: Proceedings of the March 1983 University of Alabama, Birmingham International Conference on Partial Differential Equations, Knowles, I. (ed.), North-Holland (in press)
Brezis, H., Lieb, E.H.: Minimum action solutions to some vector field equations (in preparation)
Author information
Authors and Affiliations
Additional information
Work partially supported by U.S. National Science Foundation grant PHY-8116101 A01. AMS(MOS) Classification: 35P15
Rights and permissions
About this article
Cite this article
Lieb, E.H. On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent Math 74, 441–448 (1983). https://doi.org/10.1007/BF01394245
Issue Date:
DOI: https://doi.org/10.1007/BF01394245