Skip to main content
Log in

On the lowest eigenvalue of the Laplacian for the intersection of two domains

  • Published:
Inventiones mathematicae Aims and scope

Abstract

IfA andB are two bounded domains in ℝ n and λ(A), λ(B) are the lowest eigenvalues of −Δ with Dirichlet boundary conditions then there is some translate,B x, ofB such that λ(AB x)<λ(A)+λ(B). A similar inequality holds for\(\lambda _p (A) = \inf \{ \parallel \nabla f\parallel _p^p /\parallel f\parallel _p^p |f \in W_0^{1,p} (A)\} \).There are two corollaries of this theorem: (i) A lower bound for sup x {volume (AB x)} in terms of λ(A), whenB is a ball; (ii) A compactness lemma for certain sequences inW 1,p(ℝ n ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brascamp, H.J., Lieb, E.H.: Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma. In: Functional Integration and its Applications, Arthurs, A.M. (ed.) pp. 1–14. Oxford: Clarendon Press 1975

    Google Scholar 

  2. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis, a Symposium in Honor of Salomon Bochner, Gunning, R.C. (ed.) pp. 145–199. Princeton, N.J.: Princeton University Press 1970

    Google Scholar 

  3. Cheng, S.Y.: On the Hayman-Osserman-Taylor inequality, (preprint).

  4. Croke, C.B.: The first eigenvalue of the Laplacian for plane domains. Proc. Amer. Math. Soc.81, 304–305 (1981)

    Google Scholar 

  5. Faber, C.: Beweis das unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber. Bayer. Akad. der Wiss. Math. Phys., Munich 1923, pp. 169–172

    Google Scholar 

  6. Hayman, W.K.: Some bounds for principle frequency. Applic. Anal.7, 247–254 (1977/1978)

    Google Scholar 

  7. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann.94, 97–100 (1925)

    Google Scholar 

  8. Osserman, R.: A note on Hayman's theorem on the bass note of a drum. Comment. Math. Helv.52, 545–555 (1977)

    Google Scholar 

  9. Osserman, R.: The isoperimetric inequality, Bull. Amer. Math. Soc.84, 1182–1238 (1978)

    Google Scholar 

  10. Osserman, R.: Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly86, 1–29 (1979)

    Google Scholar 

  11. Taylor, M.: Estimate on the fundamental frequency of a drum. Duke Math. J.46, 447–453 (1979)

    Google Scholar 

  12. Yau, S.T.: Isoperimetric constants and the first eigenvalue of a compact manifold. Ann. Sci. Ecolo Norm. Sup.8, 487–507 (1975)

    Google Scholar 

  13. Lieb, E.H.: Some vector field equations. In: Proceedings of the March 1983 University of Alabama, Birmingham International Conference on Partial Differential Equations, Knowles, I. (ed.), North-Holland (in press)

  14. Brezis, H., Lieb, E.H.: Minimum action solutions to some vector field equations (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work partially supported by U.S. National Science Foundation grant PHY-8116101 A01. AMS(MOS) Classification: 35P15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H. On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent Math 74, 441–448 (1983). https://doi.org/10.1007/BF01394245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01394245

Keywords

Navigation