Inventiones mathematicae

, Volume 95, Issue 3, pp 579–589 | Cite as

Regularity of measure theoretic entropy for geodesic flows of negative curvature: I

  • Gerhard Knieper
  • Howard Weiss


Entropy Negative Curvature Geodesic Flow Measure Theoretic Entropy Theoretic Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eberlein, P.: When is a geodesic flow of Anosov type I. J. Differ. Geom.8, 437–463 (1973)Google Scholar
  2. 2.
    Hopf, E.: Statistik der Lösungen geodätischer Probleme vom unstabilen Typus II. Math. Ann.117, 590–608 (1940)Google Scholar
  3. 3.
    Mañé, R.: On the continuity of metric entropy. PreprintGoogle Scholar
  4. 4.
    Oseledets, V.I.: A multiplicative ergodic theorem. Trans. Moscow Math. Soc.19, 197–231 (1968)Google Scholar
  5. 5.
    Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv.32, 54–114 (1977)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Gerhard Knieper
    • 1
  • Howard Weiss
    • 2
  1. 1.Fachbereich MathematikFreie Universität BerlinBerlin 33
  2. 2.Department of MathematicsCalifornia Institute of TechnologyPasadena

Personalised recommendations