Skip to main content
Log in

The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Annali Sc. Norm. Sup. Pisa, Serie IV. Vol.7, 539–603 (1980)

    Google Scholar 

  2. Arnold, V.I.: Mathematical methods of classical mechanics. (Appendix 9). Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  3. Arnold, V.I.: Proceedings of symposia in pure mathematics. Vol. XXVIII A.M.S., p. 66, 1976

    Google Scholar 

  4. Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helvetici53, 174–227 (1978)

    Google Scholar 

  5. Banyaga, A.: On fixed points of symplectic maps. Preprint

  6. Conley, C.C.: Isolated invariant sets and the Morse index. CBMS, Regional Conf. Series in Math., vol. 38 (1978)

  7. Conley, C.C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. To appear in Comm. Pure and Appl. Math.

  8. Moser, J.: A fixed point theorem in symplectic geometry. Acta Math.141, 17–34 (1978)

    Google Scholar 

  9. Moser, J.: Proof of a generalized form of a fixed point theorem due to G.D. Birkooff. Lecture Notes in Mathematics, Vol. 597: Geometry and Topology, pp. 464–494. Berlin-Heidelberg-New York: Springer 1977

    Google Scholar 

  10. Moser, J.: On the volume elements on a manifold. Transactions Amer. Math. Soc.120, 286–294 (1965)

    Google Scholar 

  11. Poincaré, H.: Méthodes nouvelles de la mécanique célèste. Vol. 3, chap. 28. Paris: Gauthier Villars 1899

    Google Scholar 

  12. Weinstein, A.: Lectures on symplectic manifolds. CBMS, Regional conf. series in Math., vol. 29 (1977)

  13. Earle, C.J., Eells, J.: A fibre bundle description of Teichmüller theory. J. Diff. Geometry3, 19–43 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, C.C., Zehnder, E. The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent Math 73, 33–49 (1983).

Download citation

  • Issue Date:

  • DOI: