This is a preview of subscription content, access via your institution.
References
Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations of second order. J. Math. Pures Appl.36, 235–249 (1957)
Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press, 1964
Brüning, J.: Über Knoten von Eigenfunktionen des Laplace Beltrami operator. Math. Z.158, 15–21 (1978)
Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom.17, 15–53 (1982)
Cheng, S. Y.: Eigenfunctions and nodal sets. Comment. Math. Helv.51, 43–55 (1976)
Cheng, S. Y., Yau, S. T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math.28, 333–354 (1975)
Federer, H.: Geometric measure, theory. Berlin-Heidelberg-New York: Springer 1969
Hörmander, L.: Linear partial differential operators. Berlin-Heidelberg-New York: Springer 1963
Stein, E., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton: Princeton University Press 1971
Author information
Authors and Affiliations
Additional information
Supported by NSF Grant # DMS-8610730 (1)
Supported by NSF Grant $ DMS85-04342
Rights and permissions
About this article
Cite this article
Donnelly, H., Fefferman, C. Nodal sets of eigenfunctions on Reimannian manifolds. Invent Math 93, 161–183 (1988). https://doi.org/10.1007/BF01393691
Issue Date:
DOI: https://doi.org/10.1007/BF01393691
Keywords
- Manifold
- Reimannian Manifold