Skip to main content

Nodal sets of eigenfunctions on Reimannian manifolds

This is a preview of subscription content, access via your institution.


  1. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations of second order. J. Math. Pures Appl.36, 235–249 (1957)

    Google Scholar 

  2. Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press, 1964

    Google Scholar 

  3. Brüning, J.: Über Knoten von Eigenfunktionen des Laplace Beltrami operator. Math. Z.158, 15–21 (1978)

    Google Scholar 

  4. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom.17, 15–53 (1982)

    Google Scholar 

  5. Cheng, S. Y.: Eigenfunctions and nodal sets. Comment. Math. Helv.51, 43–55 (1976)

    Google Scholar 

  6. Cheng, S. Y., Yau, S. T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math.28, 333–354 (1975)

    Google Scholar 

  7. Federer, H.: Geometric measure, theory. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  8. Hörmander, L.: Linear partial differential operators. Berlin-Heidelberg-New York: Springer 1963

    Google Scholar 

  9. Stein, E., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton: Princeton University Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Supported by NSF Grant # DMS-8610730 (1)

Supported by NSF Grant $ DMS85-04342

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donnelly, H., Fefferman, C. Nodal sets of eigenfunctions on Reimannian manifolds. Invent Math 93, 161–183 (1988).

Download citation

  • Issue Date:

  • DOI:


  • Manifold
  • Reimannian Manifold