Skip to main content

Nodal sets of eigenfunctions on Reimannian manifolds

This is a preview of subscription content, access via your institution.

References

  1. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations of second order. J. Math. Pures Appl.36, 235–249 (1957)

    Google Scholar 

  2. Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press, 1964

    Google Scholar 

  3. Brüning, J.: Über Knoten von Eigenfunktionen des Laplace Beltrami operator. Math. Z.158, 15–21 (1978)

    Google Scholar 

  4. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom.17, 15–53 (1982)

    Google Scholar 

  5. Cheng, S. Y.: Eigenfunctions and nodal sets. Comment. Math. Helv.51, 43–55 (1976)

    Google Scholar 

  6. Cheng, S. Y., Yau, S. T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math.28, 333–354 (1975)

    Google Scholar 

  7. Federer, H.: Geometric measure, theory. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  8. Hörmander, L.: Linear partial differential operators. Berlin-Heidelberg-New York: Springer 1963

    Google Scholar 

  9. Stein, E., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton: Princeton University Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant # DMS-8610730 (1)

Supported by NSF Grant $ DMS85-04342

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donnelly, H., Fefferman, C. Nodal sets of eigenfunctions on Reimannian manifolds. Invent Math 93, 161–183 (1988). https://doi.org/10.1007/BF01393691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01393691

Keywords

  • Manifold
  • Reimannian Manifold