Inventiones mathematicae

, Volume 56, Issue 2, pp 167–189 | Cite as

Combinatorics and topology of complements of hyperplanes

  • Peter Orlik
  • Louis Solomon


Euler Characteristic Rank Function Braid Group Trace Formula Exterior Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V.I.: The cohomology ring of the colored braid group. Mat. Zametki5, 227–231 (1969), Math. Notes.5, 138–140 (1969)MathSciNetGoogle Scholar
  2. 2.
    Baclawski, K.: Whitney numbers of geometric lattices. Advances in Math.16, 125–138 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Birkhoff, G.: Lattice Theory, 3rd ed; Amer. Math. Soc. Colloq. Publ. Vol. 25, Providence 1967Google Scholar
  4. 4.
    Bredon, G.E.: Introduction to Compact Transformation Groups. New York: Academic Press 1972zbMATHGoogle Scholar
  5. 5.
    Brieskorn, E.: Sur les groupes de tresses (d'après V.I. Arnold), Séminare Bourbaki 24e année 1971/72. Springer Lecture Notes No. 317, Berlin: Springer Verlag 1973Google Scholar
  6. 6.
    Deheuvels, R.: Homologie des ensembles ordonnés et des espaces topologiques. Bull. Soc. Math. France90, 261–321 (1962)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math.17, 273–302 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dold, A.: Lectures on Algebraic Topology. Grundlehren der math. Wiss. Band 200, Berlin: Springer Verlag 1972zbMATHGoogle Scholar
  9. 9.
    Folkman, J.: The homology groups of a lattice. J. Math. and Mech.15, 631–636 (1966)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lusztig, G.: The Discrete Series ofGL n OverA Finite Field, Annals of Math. Studies No. 81, Princeton: Princeton Univ. Press, 1974zbMATHGoogle Scholar
  11. 11.
    Maclane, S.: Homology. Grundlehren der math. Wiss. Band 114, Berlin: Springer Verlag 1963Google Scholar
  12. 12.
    Milnor, J.: Singular Points of Complex Hypersurfaces. Annals of Math. Studies No. 61, Princeton: Princeton Univ. Press, 1968zbMATHGoogle Scholar
  13. 13.
    Rota, G.-C.: On the Foundations of Combinational Theory I. Theory of Möbius Functions. Z. Wahrscheinlichkeitsrechnung2, 340–368 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rota, G.-C.: On the combinatorics of the Euler characteristic. Studies in Pure Math. presented to Richard Rado (L. Mirsky, ed.) p. 221–233, London: Academic Press 1971Google Scholar
  15. 15.
    Solomon, L.: The orders of the finite Chevalley groups. J. Algebra3, 376–393 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Solomon, L.: The Steinberg character of a finite group withBN-pair, Theory of Finite Groups, a Symposium (R. Brauer and C.-H. Sah, eds.) p. 213–221, New York: W. Benjamin 1969Google Scholar
  17. 17.
    Steinberg, R.: Prime power representations of finite linear groups. Canad. J. Math.8, 580–591 (1956)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Amer. Math. Soc. Memoir 154, 1975Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Peter Orlik
    • 1
  • Louis Solomon
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations