Skip to main content
Log in

Alteration of membrane fusion as a cause of acute pancreatitis in the rat

  • Original Articles
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Infusion of supramaximal doses of cerulein induces acute edematous pancreatitis in the rat. Cannulation of the main pancreatic duct does not prevent the formation of the edema but reveals an almost complete reduction of pancreatic flow. Using freeze-fracture techniques and thin-section electron microscopy, earliest structural alterations were observed at membranes of zymogen granules and the plasma membrane. Fusion of zymogen granules among each other leads to formation of large membrane-bound vacuoles within the cytoplasm. These and individual zymogen granules fuse with the basolateral plasma membrane, discharging their content into the interstitial space. The findings indicate severe changes in the specificity of the intracellular membrane fusion process induced by supramaximal doses of a pancreatic secretagogue, which finally result in autodigestion of the pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jamieson JD: Transport and discharge of exportable proteins in pancreatic exocrine cells.In Current Topics in Membranes and Transport, Vol. 3. F Bronner, A Kleinzeller (eds). New York, Academic Press, 1972, pp 273–338

    Google Scholar 

  2. Palade GE: Intracellular aspects of the process of protein synthesis. Science 189:347–358, 1975

    PubMed  Google Scholar 

  3. Jamieson JD, Palade GE: Production of secretory proteins in animal cells.In International Cell Biology. BR Brinkley, KR Porter (eds). New York, Rockefeller University Press, 1977, pp 308–317

    Google Scholar 

  4. Meldolesi J, Borgese N, DeCamilli P, Ceccarelli B: Cytoplasmic membranes and the secretory process.In Membrane Fusion. G Poste, GN Nicolson (eds). Amsterdam, North Holland Publishing Co, 1978, pp 510–598

    Google Scholar 

  5. Bieger W, Martin-Achard A, Bassler M, Kern HF: Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. IV. Stimulation byin vivo infusion of caerulein. Cell Tissue Res 165:435–453, 1976

    PubMed  Google Scholar 

  6. Lampel M, Kern HF: Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A 373:97–117, 1977

    Google Scholar 

  7. Adler G, Hupp T, Kern HF: Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch A 382:31–47, 1979

    Google Scholar 

  8. Adler G, Bieger W, Kern HF: Amino acid transport in the rat exocrine pancreas. III. Effect of maximal and supramaximal hormonal stimulation in vivo. Cell Tissue Res 194:447–462, 1978

    PubMed  Google Scholar 

  9. Pappritz G, Bräuer K: Zur Technik der Schwanzvenen-Dauerinfusion an der nicht immobilisierten Ratte. Arzneim Forsch/Drug Res 27:864–865, 1977

    Google Scholar 

  10. Bernfeld P: Amylase, α and β.In Methods in Enzymology, Vol 1. SP Colowick, NO Kaplan (eds), New York, Academic Press, 1974, pp 149–158

    Google Scholar 

  11. Zinterhofer L, Wardlaw S, Jatlow P, Seligson D: Nephelometric determination of pancreatic enzymes. II. Lipase. Clin Chim Acta 44:173–178, 1973

    PubMed  Google Scholar 

  12. Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS: Freezeetching nomenclature. Science 190:54–56, 1975

    PubMed  Google Scholar 

  13. Yu J, Branton D: Reconstitution of intramembrane particles in recombinants of erythrocyte protein Band 3 and lipid: Effects of spectrin-actin association. Proc Natl Acad Sci USA 73:3891–3895, 1976

    PubMed  Google Scholar 

  14. DeCamilli P, Peluchetti D, Meldolesi J: Structural difference between luminal and lateral plasmalemma in pancreatic acinar cells. Nature 248:245–247, 1974

    Google Scholar 

  15. Orci L, Perrelet A: Ultrastructural aspects of exocytotic membrane fusion.In Membrane Fusion. G Poste, C Nicolson (eds). Amsterdam, North Holland Publishing Co, 1978, pp 629–656

    Google Scholar 

  16. Zoepffel H: Das akute Pankreasödem, eine Vorstufe der akuten Pankreasnekrose. Dtsch Z Chir 175:301–312, 1921

    Google Scholar 

  17. Popper HL, Necheles H, Russel KC: Transition of pancreatic edema into pancreatic necrosis. Surg Gynecol Obstet 87:79–82, 1948

    Google Scholar 

  18. Grossmann MJ: Experimental pancreatitis. Arch Intern Med 96:298–307, 1955

    Google Scholar 

  19. Creutzfeldt W, Schmidt H: Aetiology and pathogenesis of pancreatitis (current concepts). Scand J Gastroenterol 5(Suppl 6):47–62, 1970

    Google Scholar 

  20. Gambill EE: Pancreatitis. St Louis, Mosby Company, 1973

    Google Scholar 

  21. White TT, Allan BJ: Intrapancreatic activation of proteases in the etiology of pancreatitis and cancer of the pancreas. Med Clin North Am 98:1305–1310, 1974

    Google Scholar 

  22. Wanke M: Pathogenese und morphologisches Bild akuter Pankreaserkrankungen.In Handbuch der Inneren Medizin Band III, Teil 6, Pankreas, 5. Auflage. MM Forell (ed). Berlin, Springer Verlag, 1976, pp 519–587

    Google Scholar 

  23. Myren J: Acute pancreatitis. Pathogenetic factors as a basis for treatment. Scand J. Gastroenterol 12:513–517, 1977

    PubMed  Google Scholar 

  24. Grossmann MJ: Experimental pancreatitis. Recent contributions. J Am Med Assoc 169:1567–1570, 1959

    PubMed  Google Scholar 

  25. Wanke M: Experimental acute pancreatitis. Curr Top Pathol 52:64–142, 1970

    PubMed  Google Scholar 

  26. Janigan DT, Nevelainen TJ, MacAnlay MA, Vethamany VG: Foreign serum-induced pancreatitis in mice. I. A new model of acute pancreatitis. Lab Invest 33:591–607, 1975

    PubMed  Google Scholar 

  27. Rao KN, Tuma J, Lombardi B: Acute hemorrhagic pancreatitis in mice. Intraparenchymal activation of zymogens, and other enzyme changes in pancreas and serum. Gastroenterology 70:720–726, 1976

    PubMed  Google Scholar 

  28. Nevelainen TJ: Pancreatic injury caused by intraductal injection of foreign serum in rat. Virchows Arch B 27:89–98, 1978

    Google Scholar 

  29. Rao KN, Zuretti MF, Baccino FM, Lombardi B: Acute hemorrhagic pancreatic necrosis in mice. The activity of lysosomal enzymes in the pancreas and the liver. Am J Pathol 98:45–60, 1980

    PubMed  Google Scholar 

  30. DeCamilli P, Peluchetti D, Meldolesi J: Dynamic changes of the lumenal plasmalemma in stimulated parotid acinar cells. J Cell Biol 70:59–74, 1976

    PubMed  Google Scholar 

  31. Tanaka Y, DeCamilli P, Meldolesi J: Membrane interactions between secretion granules and plasmalemma in three exocrine glands. J Cell Biol 84:438–453, 1980

    PubMed  Google Scholar 

  32. Andersen MC, Schiller WR: Microcirculatory dynamics in the normal and inflammed pancreas. Am J Surg 115:118–123, 1968

    PubMed  Google Scholar 

  33. Papp MD, Nemeth EP, Horvath EJ: Pancreaticoduodenal lymph flow and lipase activity in acute experimental pancreatitis. Lymphology 4:48–59, 1971

    PubMed  Google Scholar 

  34. Isenman CD, Rothman SS: Transport of α-amylase across the baso-lateral membrane of the pancreatic acinar cell. Proc Natl Acad Sci USA 74:4068–4072, 1977

    PubMed  Google Scholar 

  35. Gross JB, Levitt MD: Post-operative elevation of amylase/ creatinine clearance ratio in patients without pancreatitis. Gastroenterology 77:497–509, 1979

    PubMed  Google Scholar 

  36. Gardner JD: Regulation of pancreatic exocrine functionin vitro. Initial steps in the action of secretagogues. Annu Rev Physiol 41:55–66, 1979

    PubMed  Google Scholar 

  37. Schulz J, Stolze HH: The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol 42:127–156, 1980

    PubMed  Google Scholar 

  38. Christophe J, Calderon-Attas P, Deschodt-Lanckman M: Stimulus secretion coupling in pancreatic acinar cells exposed to pancreozymin: Membranous and intra-cellular phenomena.In Biology of Normal and Cancerous Exocrine Pancreatic Cells. Inserm Symposium No. 15. A Ribet, C Pradyrol, C Susini (eds). Amsterdam, North Holland Biomedical Press, 1980, pp 103–118

    Google Scholar 

  39. Gratzl M, Schudt C, Eherdt R, Dahl G: Fusion of isolated biological membranes.In Membrane Structure and Function, Vol 3. EE Bittar (ed). London, John Wiley & Sons, 1980, pp 59–92

    Google Scholar 

  40. Helin H, Mero M, Markkula H, Helin M: Pancreatic ultrastructure in human acute pancreatitis. Virchows Arch A 387:259–270, 1980

    Google Scholar 

  41. Réz G, Meldolesi J: Freeze-fracture of drug-induced autophagocytosis in the mouse exocrine pancreas. Lab Invest 43:269–277, 1980

    PubMed  Google Scholar 

  42. Zelander T, Ekholm R, Edlund Y: The ultrastructure of the rat exocrine pancreas after experimentally occluded outflow. J Ultrastruct Res 10:89–102, 1964

    PubMed  Google Scholar 

  43. Dressel TD, Goodale RL, Hunninghake BD, Borner JW: Sensitivity of the canine pancreatic intraductal pressure to subclinical reduction in cholinesterase activity. Am Surg 190:6–12, 1979

    Google Scholar 

  44. Dressel TD, Goodale RL, Etani S, Borner J: Ductal decompression prevents hyperamylasemia and hyperlipasemia but not acinar cell pathology in acute anticholinesterase induced pancreatitis. Natl Panc Cancer Proj 5:Abstract 32, 1980

  45. Figarella C, DeCaro A, Oi I, Sahel J: Lipase activity in blood following endoscopic pancreatography: Demonstration of its pancreatic origin and existence of ductal or acinovenous pathways in man. Scand J Gastroenterol 13:393–399, 1978

    PubMed  Google Scholar 

  46. Dumont AE, Martelli AB: Pathogenesis of pancreatic edema following exocrine duct obstruction. Am Surg 168:302–309, 1968

    Google Scholar 

  47. Metz J, Forssmann WG, Ito S: Exocrine pancreas under experimental conditions. III. Membrane and cell junctions in isolated acinar cells. Cell Tissue Res 177:459–474, 1977

    PubMed  Google Scholar 

  48. Meldolesi J, Castiglioni G, Parma R, Nassivera N, DeCamilli PD: Ca++ dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. J Cell Biol 79:156–172, 1978

    PubMed  Google Scholar 

  49. Robeneck H, Themann H, Ott K: Carbon tetrachloride induced proliferation of tight junctions in the rat liver as revealed by freeze-fracturing. Eur J Cell Biol 20:62–70, 1979

    PubMed  Google Scholar 

  50. Peracchia C, Peracchia LL: Gap junctions dynamics: Reversible effects of divalent cations. J Cell Biol 87:708–718, 1980

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Some of this material was presented during a workshop on Frontiers in Pancreatic Physiology, sponsored by National Institute of Arthritis, Metabolism and Digestive Diseases (NIAMDD) and by Center for Ulcer Research (CURE) in Reston, Virginia, on November 18–20, 1979, and in abstract form during a symposium on Basic Mechanism of Cellular Secretion sponsored by National Institutes of Health in Annapolis, Maryland, on September 17–21, 1979.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, G., Rohr, G. & Kern, H.F. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Digest Dis Sci 27, 993–1002 (1982). https://doi.org/10.1007/BF01391745

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01391745

Keywords

Navigation