Skip to main content
Log in

Kloosterman sums and Fourier coefficients of cusp forms

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [Bru] Bruggeman, R.W.: Fourier coefficients of cusp forms. Invent. Math.45, 1–18 (1978)

    Google Scholar 

  • [Bus] Buser, P.: On Cheeger's inequalityλ 1h 2/4. Proc. Symposia, in Pure Math., XXXVI, pp. 29–77 AMS, Providence 1981

    Google Scholar 

  • [Che] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. Problems in Analysis, A symposium in honour of Bochner, Princeton University Press, Princeton, N.J. 1970 pp. 195–199

    Google Scholar 

  • [Del] Deligne, P.: La conjecture de Weil I. Publ. Math. I.H.E.S.,43, 273–307 (1974)

    Google Scholar 

  • [Dl 1] Deshouillers, J.-M., Iwaniec, H.: On the greatest prime factor ofn 2+1 Ann. Inst. Fourier. in press (1982)

  • [DI2] Deshouillers, J.-M., Iwaniec, H.: An additive divisor problem. J. London Math. Soc.26, (2), 1–14 (1982)

    Google Scholar 

  • [Di3] Deshouillers, J.-M., Iwaniec, H.: Power mean-values for the Riemann zeta-function. Mathematika in press (1982)

  • [DI4] Deshouillers, J.-M., Iwaniec, H.: On the Brun-Titchmarsh theorem and the greatest prime factor ofp+a. Proc. Janos Bolyai Soc. Conf. in press (1982)

  • [EMOT] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions II. New York-Toronto-London: Mc Graw-Hill 1953

    Google Scholar 

  • [Fad] Faddeev, L.D.: Expansions in eigenfunctions of the Laplace operator in the fundamental domain of a discrete group on the Lobačevskii plane. Trudy Moscov, Mat. Obsc.,17, 323–350 (1967)

    Google Scholar 

  • [G-R] Gradsztejn, I.S., Ryżyk, I.M.: Tablice całek, sum, szeregów i iloczynow. PWN-Warszawa, 1964

  • [Gun] Gunning, R.C.: Lectures on modular forms. Princeton University Press, 1962

  • [H.-B.] Heath-Brown, D.R.: The fourth power moment of the Riemann zeta-function. Proceeding London Math. Soc.38(3), 385–422 (1979)

    Google Scholar 

  • [Hej] Hejhal, D.A.: Some observations concerning eigenvalues of the Laplacian and DirichletL-series in Recent progress in analytic number theory. London: Academic Press 1981

    Google Scholar 

  • [Hoo] Hooley, C.: On the greatest prime factor of a quadratic polynomial. Acta Math.117, 281–299 (1967)

    Google Scholar 

  • [Iwa 1] Iwaniec, H.: Fourier coefficients of cusp forms and the Riemann zeta-function. Sém. Th. Nb. Bordeaux (1979–1980), exposé no18,36 pages

  • [Iwa 2] Iwaniec, H.: Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums. Proceedings from the Journées Arithmétiques at Exeter in press (1982)

  • [Iwa 3] Iwaniec, H.: On mean values for Dirichlet's polynomials and the Riemann zeta-function. J. London Math. Soc.22, (2), 39–45 (1980)

    Google Scholar 

  • [Iwa 4] Iwaniec, H.: On the Brun-Titchmarsh theorem. J. Math. Soc. Japan34, 95–123 (1982)

    Google Scholar 

  • [Kub] Kubota, T.: Elementary Theory of Eisenstein Series. New-York: John Wiley and Sons 1973

    Google Scholar 

  • [Kuz1] Kuznietsov, N.V.: Petersson hypothesis for forms of weight zero and Linnik hypothesis (in Russian), Preprint no02, Khab. KHII, Khabarovsk 1977

  • [Kuz2] Kuznietsov, N.V.: Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloostermann sums. Math. Sbornik111, (153), no3, 334–383 (1980)

    Google Scholar 

  • [Lin] Linnik, Yu.V.: Additive problems and eigenvalues of the modular operators. Proc. Internat. Congr. Math. Stockholm 270–284 (1962)

  • [Maa1] Maass, H.: Über eine neue Art von nichtanalytischen automorphen Funktionen. Math. Ann.121, (o2) 141–183 (1949)

    Google Scholar 

  • [Maa2] Maass, H.: On modular functions of one complex variable. Tata Institute, Bombay, 1964

    Google Scholar 

  • [Mon] Montgomery, H.L.: Topics in multiplicative number theory. Lect. Notes in Math. vol. 227. Berlin-New-York: Springer 1971

    Google Scholar 

  • [Pet] Petersson, H.: Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math.58, 169–215 (1932)

    Google Scholar 

  • [Pro1] Proskurin, N.V.: Summation formulas for generalized Kloosterman sums (in Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.82, 103–135 (1979)

    Google Scholar 

  • [Pro2] Proskurin, N.V.: On a hypothesis of Yu.V. Linnik (in Russian). Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov.91, 94–118 (1979)

    Google Scholar 

  • [Pro3] Proskurin, N.V.: The estimations of the eigenvalues of Hecke's operators in the space of parabolic forms of weight zero. Studies in Number Theory, vol. 5, 136–143 (1979). Pub. Math. Inst. Steklov

    Google Scholar 

  • [Ran] Rankin, R.: Modular forms and functions. Cambridge-London-New-York: Cambridge University Press 1977

    Google Scholar 

  • [Roe1] Roelcke, W.: Über die Wellengleichung bei Grenzkreisgruppen erster Art. Sitz. Ber. Heidl. Akad. der Wiss. (Math. natur. Kl.) 1956, 4. Abh.

  • [Roe2] Roelcke, W.: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I. II. Math. Ann.167, 292–337 (1966);168, 261–324 (1967)

    Google Scholar 

  • [Sel1] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet's series. J. Indian Mat. Soc.20, 47–87 (1956)

    Google Scholar 

  • [Sel2] Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Symposia in Pure Math. VIII, A.M.S., Providence 1965, pp. 1–15

  • [Shi] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Princeton: Princeton University Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshouillers, J.M., Iwaniec, H. Kloosterman sums and Fourier coefficients of cusp forms. Invent Math 70, 219–288 (1982). https://doi.org/10.1007/BF01390728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390728

Keywords

Navigation