We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Quantitative investigation of thermal phonon pulses in sapphire, silicon, and quartz

Part I. Transmission experiments

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Using pulse-heated constantan films as a thermal phonon radiator and superconducting tin bolometer as a phonon detector, we present for the first time a full quantitative comparison between observed bolometer signals and adequate rigorous model calculations for transmission experiments ina-cut sapphire, [111]-cut silicon, as well asX-cut quartz andZ-cut quartz. Details of the observed phonon signals are explained and understood. From these experiments, we are also able to extract information about the phonon absorption coefficient in the normal state of the polycrystalline tin bolometer for longitudinal and transverse polarized phonons in quantitative agreement with an earlier experiment ina-cut sapphire which was performed with a superconducting tunnel junction as a detector. The observed transmission signals can be explained for sapphire and silicon by ballistic propagation with additional small angle scattering, but for quartz strong frequency downconversion occurs for phonons with frequencies above half a Terahertz.

In a succeding paper (Part II) the parameter deduced from the transmission experiment are applied to the analysis of the observed phonon signals in reflection experiments in the same crystals under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutfeld, R.J. v., Nethercot, A.H.: Phys. Rev. Lett.12, 641 (1964)

    Google Scholar 

  2. Gutfeld, R.J. v.: In: Physical acoustics. Mason, W.P. (ed.), Vol. V, p. 233. New York: Academic Press 1968

    Google Scholar 

  3. Weis, O.: Z. Angew. Phys.26, 325 (1969)

    Google Scholar 

  4. Herth, P., Weis, O.: Z. Angew. Phys.29, 101 (1970)

    Google Scholar 

  5. Kappus, W., Weis, O.: J. Appl. Phys.44, 1947 (1973)

    Google Scholar 

  6. Martinon, C., Weis, O.: Z. Phys. B—Condensed Matter and Quanta32, 259 (1979)

    Google Scholar 

  7. Little, W.A.: Can. J. Phys.37, 334 (1959)

    Google Scholar 

  8. Rösch, F., Weis, O.: Z. Phys. B—Condensed Matter and Quanta27, 33 (1977)

    Google Scholar 

  9. Weis, O.: Z. Phys. B—Condensed Matter and Quanta34, 55 (1979)

    Google Scholar 

  10. Weis, O.: In: Nonequilibrium phonons in nonmetallic crystals. Eisenmenger, W., Kaplyanskii, A.A. (eds.), p. 1. Amsterdam: Elsevier 1986

    Google Scholar 

  11. Anderson, A.C.: In: Nonequilibrium superconductivity, phonons and Kapitza boundaries. Gray, K.E. (ed.), p. 1. New York: Plenum Press 1981

    Google Scholar 

  12. Bayrle, R., Weis, O.: J. Low. Temp. Phys.76, 129 (1989)

    Google Scholar 

  13. Perrin, N., Budd, H.: Phys. Rev. Lett.28, 1701 (1972); J. Phys. (Paris)33, C4-33 (1972)

    Google Scholar 

  14. Eisfeld, W., Renk, K.F.: Appl. Phys. Lett.34, 481 (1979)

    Google Scholar 

  15. Bron, W.E., Grill, W.: Phys. Rev. B16, 5303, 5315 (1977)

    Google Scholar 

  16. Berberich, P., Kinder, H.: In: Phonon scattering in condensed matter V. Anderson, A.C., Wolfe, J.P. (eds.), p. 106. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  17. Eisenmenger, W., Dayem, A.H.: Phys. Rev. Lett.18, 125 (1967)

    Google Scholar 

  18. Taylor, B., Maris, H.J., Elbaum, C.: Phys. Rev. Lett.23, 416 (1969)

    Google Scholar 

  19. Maris, H.J.: In: Nonequilibrium phonons in nonmetallic crystals. Eisenmenger, W., Kaplyanskii, A.A. (eds.), p. 51. Amsterdam: Elsevier 1986

    Google Scholar 

  20. Rösch, F., Weis, O.: Z. Phys. B—Condensed Matter and Quanta25, 101, 115 (1976)

    Google Scholar 

  21. Northrop, G.A., Wolfe, J.P.: Phys. Rev. Lett.43, 1424 (1979)

    Google Scholar 

  22. Eisenmenger, W.: In: Phonon scattering in condensed matter. Maris, H.J. (ed.), p. 303. New York: Plenum Press 1980

    Google Scholar 

  23. Eichele, R., Huebener, R.P., Seifert, H.: Z. Phys. B—Condensed Matter48, 89 (1982)

    Google Scholar 

  24. Rösch, F., Weis, O.: Z. Phys. B—Condensed Matter and Quanta29, 71 (1978)

    Google Scholar 

  25. Nover, M., Weis, O.: Z. Phys. B—Condensed Matter41, 195 (1981)

    Google Scholar 

  26. Bernstein, B.T.: J. Appl. Phys.34, 169 (1963)

    Google Scholar 

  27. McScimin, H.J.: J. Appl. Phys.24, 988 (1958)

    Google Scholar 

  28. Bechmann, R.: Phys. Rev.110, 1060 (1958)

    Google Scholar 

  29. Goetze, M., Nover, M., Weis, O.: Z. Phys. B—Condensed Matter and Quanta25, 1 (1976)

    Google Scholar 

  30. Pippard, A.B.: Philos. Mag46, 104 (1955)

    Google Scholar 

  31. Chambers, R.G.: Proc. R. Soc. London Ser. A215, 481 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Weis, O. Quantitative investigation of thermal phonon pulses in sapphire, silicon, and quartz. Z. Physik B - Condensed Matter 80, 15–23 (1990). https://doi.org/10.1007/BF01390648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390648

Keywords

Navigation