Skip to main content
Log in

Euler characteristics and characters of discrete groups

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bass, H.: AlgebraicK-theory. New York: W. A. Benjamin 1968

    Google Scholar 

  2. Bass, H., Lazard, M., Serre, J-P.: Sous-groupes d'indice fini dansSL(n,ℤ). Bull. AMS70, 385–392 (1964)

    Google Scholar 

  3. Borel, A.: Linear algebraic groups. New York: W. A. Benjamin 1969

    Google Scholar 

  4. Bourbaki, N.: Algébre. Chap. 1–3. Paris: Hermann 1970

    Google Scholar 

  5. Bourbaki, N.: Algébre, Chap. 8. Modules et anneaux semi-simples. Paris: Hermann 1958

    Google Scholar 

  6. Brown, K. S.: Euler characteristics of discrete groups andG-spaces. Inventiones math.27, 229–264

  7. Burns, R. G.: Central idempotents in group rings. Can. Math. Bull.13, 527–528 (1970)

    Google Scholar 

  8. Chiswell, I. M.: Euler characteristics of groups. Submitted to Math. Z.

  9. Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Wiley Interscience No. XI (1962)

    Google Scholar 

  10. Dyer, E., Vasquez, A. T.: An invariant for finitely generated projectives overℤG. To appear in J. of Pure and Appl. Algebra

  11. Formanek, E.: Idempotents in noetherian group rings. Can. J. Math.XXV, 366–369 (1973)

    Google Scholar 

  12. Gruenberg, K. W.: Cohomological topics in group theory. Lecture Notes in Mathematics143, Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  13. Hattori, A.: Rank element of a projective module. Nagoya J. Math. 113–120 (1965)

  14. Hochster, M., Roberts, J. L.: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math.13, 115–175 (1974)

    Google Scholar 

  15. Jacobson, N.: Lie algebras. New York: Wiley Interscience No. 11 (1962)

    Google Scholar 

  16. Lang, S.: Diophantine geometry. New York: Wiley Interscience No. 11 (1962)

    Google Scholar 

  17. Lang, S.: Algebraic numbers. Reading: Addison-Wesley (1970)

    Google Scholar 

  18. Matsumura, H.: Commutative algebra. New York: W. A. Benjamin 1970

    Google Scholar 

  19. Susan Montgomery, M.: Left and right inverses in group algebras. Bull. AMS75, 539–540 (1969)

    Google Scholar 

  20. Sehgal, S. K.: Certain algebraic elements in group rings. Arch. d. Math.26, 139–143 (1975)

    Google Scholar 

  21. Serre, J-P.: Représentation linéaires des groupes finis. Collection Methodes. Paris: Hermann 1967

    Google Scholar 

  22. Serre, J-P.: Corps locaux. Paris: Hermann 1968

    Google Scholar 

  23. Serre, J-P.: Le probleme des groupes de congruence pourSL 2. Ann. Math.92, 489–527 (1970)

    Google Scholar 

  24. Serre, J-P.: Cohomologie des groupes discrets, Ann. Math. Studies 70. Princeton Univ. Press 77–169 (1971)

  25. Stallings, J. R.: Centerless groups—an algebraic formulation of Gottlieb's theorem. Topology4, 129–134 (1965)

    Google Scholar 

  26. Swan, R. G.: Induced representations and projective modules. Ann. Math.71, 552–578 (1960)

    Google Scholar 

  27. Zalesskii, A. E.: On a problem of Kaplansky (Russian). Dokl. Akad. Nauk. SSSR203, 749–751 (1972); Soviet Math. Dokl.13, 449–452 (1972)

    Google Scholar 

  28. Passman, D.: Advances in group rings. Israel J. of Math.19, 67–107 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Jean-Pierre Serre

Supported by National Science Foundation grant GP 33019X

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bass, H. Euler characteristics and characters of discrete groups. Invent Math 35, 155–196 (1976). https://doi.org/10.1007/BF01390137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01390137

Keywords

Navigation