Inventiones mathematicae

, Volume 57, Issue 2, pp 101–118 | Cite as

On a construction of representations and a problem of Enright

  • Vinay V. Deodhar


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deodhar, V.V.: Some Characterizations of Bruhat Ordering on a Coxeter group and determination of the relative Möbius function. Inventiones Math.39, 187–198 (1977)CrossRefGoogle Scholar
  2. 2.
    Dixmier, J.: Algèbres Enveloppantes. Paris: Gauthier-Villars (1974)Google Scholar
  3. 3.
    Enright, T.J.: On the fundamental series of a real semisimple Lie algebra: their irreducibility, resolutions and multiplicity formulae. Annals of Math.110, 1–82 (1979)Google Scholar
  4. 4.
    Enright, T.J.: On the algebraic construction and classification of Harish Chandra modules. Proc. Nat. Aca. Sci. Vol.75, no. 2, 1063–1065 (1978)Google Scholar
  5. 5.
    Harish Chandra: Harmonic Analysis on real reductive groups. J. of Functional Analysis. Vol.19. No. 2, 104–204 (1975)CrossRefGoogle Scholar
  6. 6.
    Kâc, V.G.: Simple irreducible graded Lie algebras of finite growth. Maths U.S.S.R. Izvestija Vol.2, No. 6 (1968)Google Scholar
  7. 7.
    Steinberg, R.: Lecture Notes on Chevalley groups, mimeographed notes. Yale University (1967)Google Scholar
  8. 8.
    Verma, D.N.: Structure of certain induced representations of complex semisimple Lie algebra. Bull. Amer. Math. Soc.74, 160–166 (1968)Google Scholar
  9. 9.
    Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Annals of Math.106, 295–308 (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Vinay V. Deodhar
    • 1
  1. 1.Tata Institute of Fundamental ResearchBombayIndia

Personalised recommendations