[As] Asimov, D.: Homotopy to divergence—free vector fields and an obstruction to finding a volume preserved by a non-singular vector field. I.A.S. Preprint (1976)
[Bo] Bourbaki, N., Livre VI. Integration, Ch. 6, p. 58 Paris: Hermann
[De] De Rham, G.: Variétés différentiables. Formes, courantes, formes harmoniques. Paris: Hermann 1955
Google Scholar
[E] Epstein, D.: Periodic Flows on 3-manifolds. Ann. of Math. (2) 95 (1972)
Google Scholar
[EMS] Edwards, R., Millett, K., Sullivan, D.: Foliations with all leaves compact. To appear in Topology (1976).
[F] Federer, H.: Geometric measure theory. Die Grundlehren ... Band 153. New York: Springer 1969
MATH
Google Scholar
[Fr] Fried, D.: To appear
[H] Haefliger, A.: Séminaire de Bourbaki 1967, Exposés 339 “Travaux de Novikov sur les feulletages”
[HE] Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time, p. 198. Cambridge: University Press 1973
MATH
Book
Google Scholar
[K] King, J.: The currents defined by analytic varieties. Acta Mathematical vol. 127, 1871
[M] Montgomery, D.: Pointwise Periodic Homeomorphisms. Amer. J. Math. 59 (1937)
[P] Plante, J.: Foliations with measure preserving holonomy. Ann. Math.102, 327–362 (1975)
MathSciNet
Article
Google Scholar
[Ph] Phelps, R.: Lectures on Choquet's theorem. Van Nostrand, Math. Studies # 7 (1966)
[PS] Phillips, A. Sullivan, D.: Geometry of Leaves. In preparation
[R] Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
MATH
Google Scholar
[RS] Ruelle, D., Sullivan, D.: Currents, flows, and diffeomorphisms. Topology vol. 14 # 4.
[Sc] Schwartz, L.: Théorie des distributions. Nouvelle Edition. Paris: Hermann 1966
MATH
Google Scholar
[Sch] Schwartzmann, S.: Asymptotic cycles. Ann. Math.66, 270–284 (1957)
Article
Google Scholar
[S] Sullivan, D.: A counterexample to the periodic orbit conjecture. To appear Publications I.H.E.S. vol. 46. Also “A New Flow” B.A.M.S. (to appear) 1976
[SW] Sullivan, D. Williams, R.: Homology of attractors. To appear in Topology (1976)
[W] Whitney, H.: Geometric integration theory, Princeton: University Press 1957
MATH
Google Scholar