Summary
A procedure for calculating the trace of the influence matrix associated with a polynomial smoothing spline of degree2m−1 fitted ton distinct, not necessarily equally spaced or uniformly weighted, data points is presented. The procedure requires orderm 2 n operations and therefore permits efficient orderm 2 n calculation of statistics associated with a polynomial smoothing spline, including the generalized cross validation. The method is a significant improvement over an existing method which requires ordern 3 operations.
Similar content being viewed by others
References
Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math.31, 377–403 (1979)
Curry, H.B., Schoenberg, I.J.: On polya frequency functions IV: The fundamental spline functions and their limits. J. Anal. Math.17, 71–107 (1966)
de Boor, C.: A Practical Guide to Splines. Appl. Math. Sci. vol. 27. New York: Springer 1978
Dongarra, J.J., Moler, C.B., Bunch, J.R., Stewart, G.W.: Linpack User's Guide. Philadelphia: Society for Industrial and Applied Mathematics 1979
Eldén, L.: An algorithm for the regularization of ill-conditioned banded least squares problems. SIAM J. Sci. Stat. Comput.5, 237–254 (1984)
Eldén, L.: A note on the computation of the generalized cross-validation function for illconditioned least squares problems. BIT24, 467–472 (1984)
Erisman, A.M., Tinney, W.F.: On computing certain elements of the inverse of a sparse matrix. Commun. ACM18, 177–179 (1975)
Golub, G.H., Plemmons, R.J.: Large-scale geodetic least-squares adjustment by dissection and orthogonal decomposition. Lin. Alg. Appl.34, 3–27 (1980)
Haley, S.B.: Solution of band matrix equations by projection-recurrence. Lin. Alg. Appl.32, 33–48 (1980)
IMSL: Library Reference Manual, edition 9. Houston: IMSL 1982
Reinsch, C.H.: Smoothing by spline functions. Numer. Math.10, 177–183 (1967)
Reinsch, C.H.: Smoothing by spline functions, II. Numer. Math.16, 451–454 (1971)
Schoenberg, I.J.: Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. USA52, 947–950 (1964)
Takahashi, K., Fagan, J., Chin, M.-S.: Formation of a sparse bus impedance matrix and its application to short circuit study. Power Industry Computer Applications Conf. Proc. Minneapolis, Minn.8, 63–69 (June 4–6, 1973)
Utreras, F.: Sur le choix de parametre d'adjustement dans le lissage par fonctions spline. Numer. Math.34, 15–28 (1980)
Utreras, F.: Optimal smoothing of noisy data using spline functions. SIAM J. Sci. Stat. Comput.2, 349–362 (1981)
Utreras, F.: Natural spline functions, their associated eigenvalue problem. Numer. Math.42, 107–117 (1983)
Wahba, G.: Smoothing noisy data with spline functions. Numer. Math.24, 383–392 (1975)
Wahba, G.: Bayesian “confidence intervals” for the cross-validated smoothing spline. J.R. Stat. Soc., Ser. B45, 133–150 (1983)
Wecker, W.E., Ansley, C.F.: The signal extraction approach to non linear regression and spline smoothing. J. Am. Stat. Assoc.78, 81–89 (1983)
Weinert, H.L., Byrd, R.H., Sidhu, G.S.: A stochastic framework for recursive computation of spline functions: Part II, smoothing splines. J. Optimization Theory Appl.30, 255–268 (1980)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hutchinson, M.F., de Hoog, F.R. Smoothing noisy data with spline functions. Numer. Math. 47, 99–106 (1985). https://doi.org/10.1007/BF01389878
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01389878