Skip to main content
Log in

Thirteen ways to estimate global error

  • Numerical Approximation of Transverse Shearing Stress in Bent Plates
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Various techniques that have been proposed for estimating the accumulated discretization error in the numerical solution of differential equations, particularly ordinary differential equations, are classified, described, and compared. For most of the schemes either an outline of an error analysis is given which explains why the scheme works or a weakness of the scheme is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt, A.: Guide to multigrid development. In: Multigrid methods; Proc. Köln-Porz 1981 (W. Hackbusch, U. Trottenberg, eds.), Lect. Notes Math., Vol. 960, pp. 220–312. Berlin-Heidelberg-New York: Springer 1982

    Google Scholar 

  2. Butcher, J.C.: The effective order of Runge-Kutta methods. In: Conference on the numerical solutions of differential equations; Proc. Dundee 1969. Lect. Notes Math., Vol. 109, pp. 133–139. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  3. Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Software1, 71–96 (1975)

    Google Scholar 

  4. Clenshaw, C.W., Oliver, F.W.J.: Solution of differential equations by recurrence relations. Math. Tab. Wash.5, 34–39 (1951)

    Google Scholar 

  5. Dahlquist, G.: On the control of the global error in stiff initial value problems. In: Numerical Analysis; Proc. Dundee 1981. Lect. Notes Math., Vol. 912, pp. 38–49. Berlin: Springer 1981

    Google Scholar 

  6. Dalle Rive, L., Pasciutti, F.: Runge-Kutta methods with global error estimates. J. Inst. Maths. Applics.16, 381–388 (1975)

    Google Scholar 

  7. Epstein, B., Hicks, D.: Computational experiments on two error estimation procedures for ordinary differential equations. AFWL-TR-78-119, Air Force Weapons Lab, Kirtland AFB, NM, 1979

    Google Scholar 

  8. Epstein, B., Hicks, D.L.: Comparison between two error estimation procedures. In: Information linkage between applied mathematics and industry (P.C.C. Wang, ed.), pp. 293–298. New York: Academic Press 1979

    Google Scholar 

  9. Eriksson, L.O.: MOLCOL — an implementation of one-leg methods for partitioned stiff ODEs. TRITA-NA-8319, Numer. Anal., R. Inst. of Technology, Stockholm, 1983

    Google Scholar 

  10. Fox, L.: Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc. R. Soc. Lond., Ser. A190, 31–59 (1947)

    Google Scholar 

  11. Fox, L.: Ordinary differential equations: Boundary-value problems and methods. In: Numerical solution of ordinary and partial differential equations (L. Fox, ed.), pp. 58–72. Oxford: Pergamon Press 1962

    Google Scholar 

  12. Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems, I. Numer. Math.25, 409–419 (1976)

    Google Scholar 

  13. Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems, II. Numer. Math.27, 407–420 (1977)

    Google Scholar 

  14. Frank, R., Hertling, J., Ueberhuber, C.W.: Iterated defect correction based on estimates of the local discretization error. Report No. 18/76, Inst. Numer. Math., Technical University of Vienna, 1976

  15. Frank, R., Macsek, F., Ueberhuber, C.W.: Asymptotic error expansions for defect correction iterates (manuscript) c 1982

  16. Frank, R., Ueberhuber, C.W.: Iterated defect corrections for differential equations, I: Theoretical results. Computing20, 207–228 (1978)

    Google Scholar 

  17. Gear, C.W.: Numerical initial value problems in ordinary differential equations. Englewood Cliffs, N.J.: Prentice-Hall 1971

    Google Scholar 

  18. Johnson, L.W., Riess, R.D.: Numerical analysis (2nd edition). Reading, MA: Addison-Wesley 1982

    Google Scholar 

  19. Joyce, D.C.: Survey of extrapolation processes in numerical analysis. SIAM Rev.13, 435–490 (1971)

    Google Scholar 

  20. Krogh, F.T.: Private communication (c1975)

  21. Lindberg, B.: Error estimation and iterative improvement for discretization algorithms. BIT20, 486–500 (1980)

    Google Scholar 

  22. Mayers, D.F.: Ordinary differential equations: Prediction and correction; deferred correction. In: Numerical solution of ordinary and partial differential equations (L. Fox, ed.), pp. 28–45. Oxford: Pergamon Press 1962

    Google Scholar 

  23. Merluzzi, P., Brosilaw, C.: Runge-Kutta integration algorithms with built-in estimates of the accumulated truncation error. Computing20, 1–16 (1978)

    Google Scholar 

  24. Pereyra, V.: On improving an approximate solution of a functional equation by deferred corrections. Numer. Math.8, 376–391 (1966)

    Google Scholar 

  25. Prothero, A.: Estimating the accuracy of numerical solutions to ordinary differential equations. In: Computational techniques for ordinary differential equations (I. Gladwell, D.K. Sayers, eds.), pp. 103–128. London: Academic Press 1980

    Google Scholar 

  26. Robinson, A., Prothero, A.: Global error estimates for solutions to stiff systems of ordinary differential equations (contributed paper). Dundee Numer. Anal. Conf. 1977

  27. Shampine, L.F.: Global error estimation for stiff ODEs (manuscript). Dundee Numer. Anal. Conf. 1983

  28. Shampine, L.F., Baca, L.S.: Global error estimates for ODEs based on extrapolation methods. SIAM J. Sci. Stat. Comput.6, 1–14 (1985)

    Google Scholar 

  29. Shampine, L.F., Watts, H.A.: Global error estimation for ordinary differential equations. ACM Trans. Math. Software2, 172–186 (1976)

    Google Scholar 

  30. Skeel, R.D.: A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal.19, 171–196 (1982)

    Google Scholar 

  31. Skeel, R.D.: Computational error estimates for stiff ODEs. In: Proceedings of the first international conference on computational mathematics; Benin City 1983 (S.O. Fatunla, ed.). Dublin: Boole Press (To appear)

  32. Spijker, M.: On the structure of error estimates for finite difference methods. Numer. Math.18, 73–100 (1971)

    Google Scholar 

  33. Stetter, H.J.: Local estimation of the global discretization error. SIAM J. Numer. Anal.8, 512–523 (1971)

    Google Scholar 

  34. Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  35. Stetter, H.J.: Economical global error estimation. In: Stiff differential systems (R.A. Willoughby, ed.), pp. 245–258. New York-London: Plenum Press 1974

    Google Scholar 

  36. Stetter, H.J.: Global error estimation in ODE-solvers. In: Numerical analysis Proc. Dundee 1977 (G.A. Watson, ed.), Lect. Notes Math., Vol. 630, pp. 179–189. Berlin-Heidelberg-New York: Springer 1978

    Google Scholar 

  37. Stetter, H.J.: The defect correction principle and discretization methods. Numer. Math.29, 425–443 (1978)

    Google Scholar 

  38. Stetter, H.J.: Tolerance proportionality in ODE-codes. In: Working papers for the 1979 SIG-NUM meeting on numerical ordinary differential equations (R.D. Skeel, ed.), pp. 10.1–10.6. UIUCDCS-R-79-963, University of Illinois, Urbana 1979

    Google Scholar 

  39. Stetter, H.J.: Defect control and global error estimates. Manuscript, presented at a meeting at the University of Toronto, July 15–16 (1982)

  40. Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math.27, 21–39 (1976)

    Google Scholar 

References Added in Proof

  1. Allgower, E.L., Böhmer, K., McCormick, S.: Discrete correction methods for operator equations. In: Numerical solution of nonlinear equations. Proceedings, Bremen 1980 (E.L. Allgower, K. Glashoff, H.-O. Peitgen, eds.), pp. 30–97. Lecture Notes in Mathematics, Vol. 878. Berlin-Heidelberg-New York: Springer 1981

    Google Scholar 

  2. Böhmer, K.: A defect correction method for functional equations. In: Approximation theory, Proceedings, Bonn 1976 (R. Schaback, K. Scherer, eds.), pp. 16–29. Lecture Notes in Mathematics, Vol. 556. Berlin-Heidelberg-New York: Springer 1976

    Google Scholar 

  3. Böhmer, K.: Discrete Newton methods and iterated defect corrections. Numer. Math.37, 167–192 (1981)

    Google Scholar 

  4. Böhmer, K.: Asymptotic error expansions and discrete Newton methods. In: Numerical integration of differential equations and large linear systems, Proceedings, Bielefeld 1980 (J. Hinze, ed.), pp. 292–300. Lecture Notes in Mathematics, Vol. 968. Berlin-Heidelberg-New York: Springer 1982

    Google Scholar 

  5. Böhmer, K., Hemker, P., Stetter, H.J.: The defect correction approach. In: —

    Google Scholar 

  6. Böhmer, K., Stetter, H.J. (eds.). Defect correction methods: theory and applications. Computing Supplementum; 5. Vienna: Springer 1984

    Google Scholar 

  7. Dekker, K., Verwer, J.G.: Estimating the global error of Runge-Kutta approximations for ordinary differential equations. In: Differential-difference equations (L. Collatz et al., eds.), pp. 55–71. ISNM Series, Vol. 62. Basel: Birkhäuser 1983

    Google Scholar 

  8. Dew, P.M., West, M.R.: Estimating and controlling the global error in Gear's method. BIT19, 135–137 (1979)

    Google Scholar 

  9. Gladwell, I.: Initial value routines in the NAG library. ACM Trans. Math. Software5, 386–400 (1979)

    Google Scholar 

  10. Hackbusch, W.: Bemerkungen zur iterierten Defektkorrektur und zu ihrer Kombination mit Mehrgitterverfahren. Revue Roumaine Math. Pures Appl.26, 1319–1329 (1981)

    Google Scholar 

  11. Hanson, P.M., Walsh, J.E.: Asymptotic theory of the global error and some techniques of error estimation. Numer. Math.45, 51–74 (1984)

    Google Scholar 

  12. Hemker, P.W.: Introduction to multigrid methods. Nw. Arch. Wisk. 190 (To appear)

  13. Shampine, L.F.: Global error estimation for stiff ODEs. SAND 79-1587, Sandia National Lab., Albuquerque, NM, 20 pp., 1979

    Google Scholar 

  14. Shampine, L.F., Gordon, M.K.: Computer solution of ordinary differential equations: the initial value problem. San Francisco: Freeman 1975

    Google Scholar 

  15. Shniad, H.: Global error estimation for the implicit trapezoidal rule. BIT20, 120–121 (1980)

    Google Scholar 

  16. Stetter, H.J.: Global error estimation in ordinary initial value problems. In: Numerical integration of differential equations and large linear systems, Proceedings, Bielefeld 1980 (J. Hinze, ed.), pp. 269–279. Lecture Notes in Mathematics, Vol. 968. Berlin-Heidelberg-New York: Springer 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is partially supported by NSF Grant No. MCS-8107046

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skeel, R.D. Thirteen ways to estimate global error. Numer. Math. 48, 1–20 (1986). https://doi.org/10.1007/BF01389440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389440

Subject Classifications

Navigation