Inventiones mathematicae

, Volume 72, Issue 2, pp 201–220 | Cite as

Artin groups and infinite Coxeter groups

  • K. I. Appel
  • P. E. Schupp


Coxeter Group Artin Group Infinite Coxeter Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birman, J.: Braids, Links, and Mapping Class Groups. Princeton, N.J.: Princeton University Press 1974Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6, Eléments de Mathématique XXXIV. Paris: Hermann 1968Google Scholar
  3. 3.
    Brieskorn, E.: Die Fundamentalgruppe des Raumes der Regulären Orbits einer endlichen komplexen Spielsgruppe. Invent. Math.12, 57–61 (1971)Google Scholar
  4. 4.
    Brieskorn, E., Saito, K.: Artin-gruppen und Coxeter-gruppen. Invent. Math.17, 245–271 (1972)Google Scholar
  5. 5.
    Coxeter, H.S.M.: The complete enumeration of finite groups of the formR i2=(R iRj)k ij=1. J. London Math. Soc.10, 21–25 (1935)Google Scholar
  6. 6.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math.17, 273–302 (1972)Google Scholar
  7. 7.
    Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford, 2 Ser.20, 235–254 (1969)Google Scholar
  8. 8.
    Len, V.Y.: Artin's braids and their connections with groups and spaces. Etoge Nauke e Texneke. Algebra, Topologeya, Geometreya, Tom 17Google Scholar
  9. 9.
    Lyndon, R.C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966)Google Scholar
  10. 10.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Springer 1977Google Scholar
  11. 11.
    Schupp, P.E.: A survey of small cancellation theory. Word Problems, pp. 569–589. Amsterdam: North Holland 1973Google Scholar
  12. 12.
    Tits, J.: Le problème des mots dans les groupes de Coxeter. Instituto Nazionale di Alta Mathematica, Symposia Mathematica 1, 175–185 (1968)Google Scholar
  13. 13.
    Tits, J.: Normalisateurs de tores I. Groupes de Coxeter étendus. J. Algebra 4, 96–116 (1966)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. I. Appel
    • 1
  • P. E. Schupp
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations