Advertisement

Numerische Mathematik

, Volume 29, Issue 3, pp 291–306 | Cite as

Error estimates for MAC-like approximations to the linear Navier-Stokes equations

  • T. A. Porsching
Article

Summary

In this paper a priori error estimates are derived for the discretization error which results when the linear Navier-Stokes equations are solved by a method which closely resembles the MAC-method of Harlow and Welch. General boundary conditions are permitted and the estimates are in terms of the discreteL2 norm. A solvability result is given which also applies to a generalization of the method to the nonlinear case. This generalization is used in the last section to produce a numerical solution to the problem of flow around an obstacle.

Subject Classifications

AMS (MOS): 65-62 76-65: CR 5-17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor, G.K.: An introduction to fluid dynamics. London: Cambridge University Press 1967Google Scholar
  2. 2.
    Berge, C., Ghouila-Houri, A.: Programming, games and transportation networks. London: Methuen 1965.Google Scholar
  3. 3.
    Chorin, A.J.: On the convergence of discrete approximations to the navier-stokes equations. Math. Comput.23, 341–353 (1969)Google Scholar
  4. 4.
    Daly, B.J.: Numerical study of the effects of surface tension on interface instability. Phys. Fluids12, 1340–1354 (1969)Google Scholar
  5. 5.
    Daly, B.J., Pracht, W.E.: Numerical study of density-current surges. Phys. Fluids11, 15–30 (1968)Google Scholar
  6. 6.
    Donovan, L.F.: A numerical solution of unsteady flow in a two-dimensional square cavity. AIAA J.8, 524–529 (1970)Google Scholar
  7. 7.
    Harlow, F.H., Welch, F.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids8, 2182–2189 (1965)Google Scholar
  8. 8.
    Hirt, C.W.: Heuristic stability theory for finite-difference equations. J. Computational Phys.2, 339–355 (1968)Google Scholar
  9. 9.
    Jamet, P., Lascaux, P., Raviart, P.A.: Une methode de resolution numerique des equations de navier-stokes. Numer. Math.16, 93–114 (1970)Google Scholar
  10. 10.
    Krzhivitski, A., Ladyzhenskaya, O.A.: A grid method for the navier-stokes equations. Soviet Physics Dokl.11, 212–213 (1966)Google Scholar
  11. 11.
    Leray, J.: Etudes de diverses equations integrales non lineaires et de quelques problems que pose l'hydrodynamique. J. Math. Pures Appl., 9 Serie,12, 1–82 (1933)Google Scholar
  12. 12.
    Prandtl, L., Tietjens, O.G.: Applied hydro- and aeromechanics. New York: McGraw-Hill 1934Google Scholar
  13. 13.
    Roache, P.J.: Computational fluid dynamics. Albuquerque: Hermosa 1976Google Scholar
  14. 14.
    Roache, P.J.: On artificial viscosity. J. Computational Phys.10, 169–187 (1972)Google Scholar
  15. 15.
    Richtmyer, R.D., Morton, K.W.: Difference methods for initial value problems, 2nd ed. New York: Interscience 1967Google Scholar
  16. 16.
    Temam, R.: Une methode d'approximation de la solution des equations de navier-stokes. Bull. Soc. Math. France96, 115–152 (1968)Google Scholar
  17. 17.
    Temam, R.: On the theory and numerical analysis of the navier-stokes equations. Univ. of Maryland, Lecture Note No. 9, 1973Google Scholar
  18. 18.
    Welch, J.E., Harlow, F.H., Shannon, J.P., Daly, B.J.: The MAC method. LASL Report No. LA-3425, Los Alamos Scientific Laboratory, Los Alamos, N. Mexico, 1966Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • T. A. Porsching
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of PittsburghPittsburghUSA

Personalised recommendations