Proof of the Deligne-Langlands conjecture for Hecke algebras

This is a preview of subscription content, log in to check access.

References

  1. [A] Atiyah, M.F.: Global theory of elliptic operators. Proc. Int. Conf. Funct. Anal. Rel. Topics, Tokyo 1969

  2. [AS] Atiyah, M.F., Segal, G.B.: EquivariantK-theory and completion. J. Differ. Geom.3, 1–18 (1969)

    Google Scholar 

  3. [BV] Barbash, D., Vogan, D.: Unipotent representation of complex semisimple groups. Ann. Math.121, 41–110 (1985)

    Google Scholar 

  4. [BFM] Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch and topologicalK-theory for singular varieties. Acta Math.143, 155–192 (1979)

    Google Scholar 

  5. [BZ] Bernstein, J., Zelevinskii, A.V.: Induced representations of reductivep-adic groups, I. Ann. Sci. E.N.S.10, 441–472 (1977)

    Google Scholar 

  6. [BS] Beynon, W.M., Spaltenstein, N.: Green functions of finite Chevalley groups of typeE n (n=6, 7, 8). J. Algebra88, 584–614 (1984)

    Google Scholar 

  7. [BB] Bialynicky-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math.98, 480–497 (1973)

    Google Scholar 

  8. [BW] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups. Ann. Math. Stud.94 (1980), Princeton Univ. Press

  9. [G] Ginsburg, V.: Lagrangian construction for representations of Hecke algebras. (Preprint 1984)

  10. [H] Hironaka, H.: Bimeromorphic smoothing of a complex analytic space. Acta Math. Vietnam.2, (no2), Hanoi 1977

  11. [K] Kasparov, G.G.: Topological invariants of elliptic operators I.,K-homology. Izv. Akad. Nauk. SSSR39, 796–838 (1975)

    Google Scholar 

  12. [KL1] Kazhdan, D., Lusztig, G.: A topological approach to Springer's representations. Adv. Math.38, 222–228 (1980)

    Google Scholar 

  13. [KL2] Kazhdan, D., Lusztig, G.: EquivariantK-theory and representations of Hecke algebras II. Invent. Math.80, 209–231 (1985)

    Google Scholar 

  14. [Ko] Kostant, B.: The principal 3-dimensional subgroup and the Betti numbers of a complex Lie group. Am. J. Math.81, 973–1032 (1959)

    Google Scholar 

  15. [La] Langlands, R.P.: Problems in the theory of automorphic forms Lect. Modern Anal. Appl., Lect. Notes Math., vol. 170, pp. 18–86. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  16. [L1] Lusztig, G.: Some examples of square integrable representations of semisimplep-adic groups. Trans. Am. Math. Soc.277, 623–653 (1983)

    Google Scholar 

  17. [L2] Lusztig, G.: Cells in affine Weyl groups. In: Algebraic groups and related topics, Hotta, R. (ed.), Advanced Studies in Pure Mathematics, vol. 6. Kinokunia, Tokyo and North-Holland, Amsterdam, 1985

    Google Scholar 

  18. [L3] Lusztig, G.: Character sheavesV. Adv. Math.61, 103–155 (1986)

    Google Scholar 

  19. [L4] Lusztig, G.: EquivariantK-theory and representations of Hecke algebras. Proc. Am. Math. Soc.94, 337–342 (1985)

    Google Scholar 

  20. [M] Mostow, G.D.: Fully reducible subgroups of algebraic groups. Am. J. Math.78, 200–221 (1956)

    Google Scholar 

  21. [Se] Segal, G.B.: EquivariantK-theory. Publ. Math. IHES34, 129–151 (1968)

    Google Scholar 

  22. [Sh] Shoji, T.: On the Green polynomials of classical groups. Invent. math.74, 239–264 (1983)

    Google Scholar 

  23. [Sl] Slodowy, P.: Four lectures on simple groups and singularities. Commun. Math. Inst., Rijksuniv. Utr.11 (1980)

  24. [Sn] Snaith, V.: On the Künneth spectral sequence in equivariantK-theory. Proc. Camb. Philos. Soc.72, 167–177 (1972)

    Google Scholar 

  25. [St] Steinberg, R.: On a theorem of Pittie. Topology14, 173–177 (1975)

    Google Scholar 

  26. [T1] Thomason, R.: AlgebraicK-theory of group scheme actions. Proc. Topol. Conf. in honor J. Moore, Princeton 1983

  27. [T2] Thomason, R.: Comparison of equivariant algebraic and topologicalK-theory. Preprint

  28. [Z1] Zelevinskii, A.V.: Induced representations of reductivep-adic groups. II. On irreducible representations ofGL n. Ann. Sci. E.N.S.13, 165–210 (1980)

    Google Scholar 

  29. [Z2] Zelevinskii, A.V.: Ap-adic analogue of the Kazhdan-Lusztig conjecture. Funkts. Anal. Prilozh.15, 9–21 (1981)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kazhdan, D., Lusztig, G. Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent Math 87, 153–215 (1987). https://doi.org/10.1007/BF01389157

Download citation