Advertisement

Inventiones mathematicae

, Volume 87, Issue 1, pp 129–151 | Cite as

Dehn twists and pseudo-Anosov diffeomorphisms

  • Albert Fathi
Article

Summary

We show that it is possible to obtain many pseudo-Anosov diffeomorphisms from Dehn twists. In particular, we generalize a theorem of Long and Morton to obtain that iff is a pseudo-Anosov diffeomorphism of an oriented surface andTγ is the Dehn twist around the simple closed curve γ, then the isotopy class ofT γ n f contains a pseudo-Anosov diffeomorphism except for at most 7 consecutive values ofn.

Keywords

Oriented Surface Isotopy Class Dehn Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [FLP] Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les surfaces. Astérisque66–67 (1979)Google Scholar
  2. [LM] Long, D., Morton, H.: Hyperbolic 3-manifolds and surface automorphisms. PreprintGoogle Scholar
  3. [Ma] Masur, H.: Two boundaries of Teichmüller space. Duke Math. J.49, 183–190 (1982)Google Scholar
  4. [Pa1] Papadopoulos, A.: Difféomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie. Ann. Scient. Éc. Norm Super., IV. Ser.15, 543–546 (1982)Google Scholar
  5. [Pa2] Papadopoulos, A.: Deux remarques sur la géométrie symplectique de l'espace des feuilletages mesurés sur une surface. Ann. Inst. Fourier (in press) (1986)Google Scholar
  6. [Pa3] Papadopoulos, A.: Geometric intersection functions and Hamiltonian flows on the space of measured foliations on a surface. Preprint Institute of Advanced StudiesGoogle Scholar
  7. [Re] Rees, M.: An alternative approach to the ergodic theory of measured foliations on surfaces. Ergodic Theory Dyn. Syst.1, 461–488 (1981)Google Scholar
  8. [St] Strebel, K.: Quadratic differentials. Berlin, Heidelberg, New York, Tokyo: Springer 1984Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Albert Fathi
    • 1
  1. 1.Département de MathématiqueUA 1169 du CNRS, Université Paris-SudOrsayFrance

Personalised recommendations