Skip to main content
Log in

Integrable representations of affine Lie-algebras

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Garland H.: The arithmetic theory of Loop algebras. J. Alg.53, 480–551 (1978)

    Google Scholar 

  2. Humphreys, J.E.: Introduction to Lie-algebras and representation theory. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  3. Kac V.: Infinite dimensional Lie-algebras. Prog. Math., Boston44, 1983

  4. Chari V., Pressley A.N.: New unitary representations of loop groups. Preprint (to appear in Math. Ann.)

  5. Chari V., Pressley A.N.: Integrable Representations of twisted affine Lie-algebras. (Preprint)

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author thanks the Forschungsinstitut für Mathematik ETH Zurich for their hospitality

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chari, V. Integrable representations of affine Lie-algebras. Invent Math 85, 317–335 (1986). https://doi.org/10.1007/BF01389093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389093

Keywords

Navigation