Skip to main content
Log in

Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Clarke has shown that the problem of findingT-periodic solutions for a convex Hamiltonian system is equivalent to the problem of finding critical points to a certain functional, dual to the classical action functional. In this paper, we relate the Morse index of the critical point to the minimal period of the correspondingT-periodic solution. In particular, we show that if the critical point is obtained by the Ambrosetti-Rabinowitz mountain-pass theorem the corresponding solution has minimal periodT, that is, it cannot beT/k-periodic withk integer,k≧2. As a consequence, we prove that if the Hamiltonian is flat near an equilibrium and superquadratic near infinity, then for anyT>0, the corresponding Hamiltonian system has a periodic solution with minimal periodT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Sc. Norm. Super. Pisa7, 539–603 (1980)

    Google Scholar 

  2. Amann, H., Zehnder, E.: Periodic solutions of asymptotically linear Hamiltonian equations. Manuscr. Math.32, 149–189 (1980)

    Google Scholar 

  3. Ambrosetti, A., Mancini, G.: Solutions of minimal period for a class of convex Hamiltonian systems. Math. Ann.255, 405–421 (1981)

    Google Scholar 

  4. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal.14, 349–381 (1973)

    Google Scholar 

  5. Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. New York: Wiley 1984

    Google Scholar 

  6. Cambini, A.: Sul lemma di Morse. Boll. Unione Met. Ital.7, 87–93 (1973)

    Google Scholar 

  7. Clarke, F.: Solutions périodiques des équations hamiltoniennes. C.R. Acad. Sci., Paris287, 951–952 (1978)

    Google Scholar 

  8. Clarke, F.: Periodic solutions of Hamiltonian inclusions. J. Differ. Equations40, 1–6 (1981)

    Google Scholar 

  9. Clarke, F.: Periodic solutions of Hamiltonian's equations and local minima of the dual action (To appear)

  10. Clarke, F., Ekeland, I.: Hamiltonian trajectories having prescribed minimal period. Comm. Pure Appl. Math.33, 103–116 (1980)

    Google Scholar 

  11. Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math. (To appear)

  12. Ekeland I.: Nonconvex minimization problems. Bull. Am. Math. Soc.1, New Series 443–474 (1979)

    Google Scholar 

  13. Ekeland, I.: Une théorie de Morse pour les systèmes hamiltoniens convexes. Ann. Inst. Henri Poincaré: Analyse non linéaire.1, 19–78 (1984)

    Google Scholar 

  14. Ekeland, I.: Periodic solutions to Hamiltonian equations and a theorem of P. Rabinowitz. Differ. Equations34, 523–534 (1979)

    Google Scholar 

  15. Ekeland, I.: An index theory for periodic solutions of convex Hamiltonian systems. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkeley, 1983, (To appear)

  16. Ekeland, I.: Hypersurfaces pincées et systèmes hamiltoniens. Note C.R. Acad. Sci. Paris (à paraître 1984)

  17. Ekeland, I., Teman, R.: Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, 1974; English translation, “Convex analysis and variational problems”. North-Holland-Elsevier, 1976

  18. Gromoll, D., Meyer, W.: On differentiable functions with isolated critical points. Topology8, 361–369 (1969)

    Google Scholar 

  19. Girardi, M., Matzeu, M.: Some results on solutions of minimal period to superquadratic Hamiltonian equations. Nonlinear Anal., Theory Methods Appl.7, 475–482 (1983)

    Google Scholar 

  20. van Groesen, E.: Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian systems. J. Differ. Equations (To appear)

  21. Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain pass theorem. J. Lond. Math. Soc. (To appear)

  22. Hofer, H.: The topological degree at a critical point of mountain pass type. Proc. Am. Math. Soc. Summer Institute on Nonlinear Functional Analysis (Berkely, 1983) (To appear)

  23. Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations. English translation, Pergamon press, 1963

  24. Palais, R.: Ljusternik-Schnirelman theory on Banach manifolds. Topology5, 115–132 (1966)

    Google Scholar 

  25. Rabinowitz, P.: Periodic solutions of Hamiltonian systems Comm. Pure Appl. Math.31, 157–184 (1978)

    Google Scholar 

  26. Rockafellar, R.T.: Convex analysis. Princeton: University Press (1970)

    Google Scholar 

  27. Takens, F.: A note on sufficiency of jets. Invent. Math. 225–231 (1971)

  28. Yakubovich, V., Starzhinskii, V.: Linear differential equations with periodic coefficients. New York: Halsted Press, Wiley

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekeland, I., Hofer, H. Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems. Invent Math 81, 155–188 (1985). https://doi.org/10.1007/BF01388776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388776

Keywords

Navigation