Skip to main content
Log in

A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We present here a new hybrid method for the iterative solution of large sparse nonsymmetric systems of linear equations, say of the formAx=b, whereA ∈ ℝN, N, withA nonsingular, andb ∈ ℝN are given. This hybrid method begins with a limited number of steps of the Arnoldi method to obtain some information on the location of the spectrum ofA, and then switches to a Richardson iterative method based on Faber polynomials. For a polygonal domain, the Faber polynomials can be constructed recursively from the parameters in the Schwarz-Christoffel mapping function. In four specific numerical examples of non-normal matrices, we show that this hybrid algorithm converges quite well and is approximately as fast or faster than the hybrid GMRES or restarted versions of the GMRES algorithm. It is, however, sensitive (as other hybrid methods also are) to the amount of information on the spectrum ofA acquired during the first (Arnoldi) phase of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldi, W.E. (1951): The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math.9, 17–29

    Google Scholar 

  2. Carathéodory, C., Fejér, L. (1911): Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz. Rend. Circ. Mat. Palermo32, 218–239

    Google Scholar 

  3. Eiermann, M. (1989): On semiiterative methods generated by Faber polynomials. Numer. Math.56, 139–156

    Google Scholar 

  4. Eiermann, M. (1992): Fields of values and iterative methods. Linear Algebra Appl. (to appear)

  5. Eiermann, M., Li, X., Varga, R.S. (1989): On hybrid semi-iterative methods. SIAM J. Numer. Anal.26, 152–168

    Google Scholar 

  6. Eiermann, M., Niethammer, W. (1983): On the construction of semiiterative methods. SIAM J. Numer. Anal.20, 1153–1160

    Google Scholar 

  7. Eiermann, M., Niethammer, W., Varga, R.S. (1985): A study of semiiterative methods for non-symmetric systems of linear equations. Numer. Math.47, 505–533

    Google Scholar 

  8. Eiermann, M., Starke, G. (1990): The near-best solution of a polynomial minimization problem by the Carathéodory-Fejér method. Constr. Approx.6, 303–319

    Google Scholar 

  9. Ellacott, S.W. (1983): Computation of Faber series with application to numerical polynomial approximation in the complex plane. Math. Comp.40, 575–587

    Google Scholar 

  10. Elman, H.C., Saad, Y., Saylor, P.E. (1986): A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations. SIAM J. Sci. Stat. Comput.7, 840–855

    Google Scholar 

  11. Elman, H.C., Streit, R.L. (1986): Polynomial iteration for nonsymmetric indefinite linear systems. In: Numerical Analysis, Lecture Notes in Mathematics 1230, pp. 103–117. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Faber, G. (1903): Über polynomische Entwicklungen. Math. Ann.57, 389–408

    Google Scholar 

  13. Farkova, N.A. (1988): The use of Faber polynomials to solve systems of linear equations. U.S.S.R. Comput. Maths. Math. Phys.28, 22–32

    Google Scholar 

  14. Fischer, B., Freund, R.W. (1991): Chebyshev polynomials are not always optimal. J. Approx. Theory65, 261–272

    Google Scholar 

  15. Gaier, D. (1987): Lectures on complex approximation. Birkhäuser, Boston Basel Stuttgart

    Google Scholar 

  16. Golub, G.H., Loan, C.F.V. (1989): Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore London

    Google Scholar 

  17. Golub, G.H., Varga, R.S. (1961): Chebyshev semiiterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. Numer. Math.3, 147–168

    Google Scholar 

  18. Gutknecht, M.H. (1986): An iterative method for solving linear equations based on minimum norm Pick-Nevanlinna interpolation. In: CKC et al., eds. Approximation theory V. pp. 371–374. New York, Academic Press

    Google Scholar 

  19. Henrici, P. (1974): Applied and computational complex analysis I. Wiley, New York London Sydney Toronto

    Google Scholar 

  20. Henrici, P. (1986): Applied and computational complex analysis III. Wiley, New York London Sydney Toronto

    Google Scholar 

  21. Horn, R.A., Johnson, C.R. (1991): Topics in matrix analysis. Cambridge University Press, Cambridge New York Port Chester Melbourne Sydney

    Google Scholar 

  22. Kövari, T., Pommerenke, C. (1967): On Faber polynomials and Faber expansions. Math. Z.99, 193–206

    Google Scholar 

  23. Kublanovskaja, V.N. (1959): Applications of analytic continuation in numerical analysis by means of change of variables. Trudy Mat. Inst. Steklov53, 145–185

    Google Scholar 

  24. Li, X. (1989): An adaptive method for solving nonsymmetric linear systems involving application of SCPACK. PhD thesis, Kent State University

  25. Manteuffel, T.A. (1978): Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numer. Math.31, 183–208

    Google Scholar 

  26. Nachtigal, N.M., Reichel, L., Trefethen, L.N. (1992): A hybrid GMRES algorithm for nonsymmetric matrix iterations. SIAM J. Matrix Anal. Appl.13, 796–825

    Google Scholar 

  27. Nehari, Z. (1952): Conformal mapping. McGraw-Hill, New York

    Google Scholar 

  28. Niethammer, W., Varga, R.S. (1983): The analysis ofk-step iterative methods for linear systems from summability theory. Numer. Math.41, 177–206

    Google Scholar 

  29. Pommerenke, C. (1965): Konforme Abbildung und Fekete-Punkte. Math. Z.89, 422–438

    Google Scholar 

  30. Rivlin, T.J., Shapiro, H.S. (1961): A unified approach to certain problems of approximation and minimization. J. Soc. Indust. Appl. Math.9, 670–699

    Google Scholar 

  31. Saad, Y. (1980): Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl.34, 269–295

    Google Scholar 

  32. Saad, Y. (1987): Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems. SIAM J. Numer. Anal.24, 155–169

    Google Scholar 

  33. Saad, Y., Schultz, M.H. (1986): GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.7, 856–869

    Google Scholar 

  34. Saylor, P.E., Smolarski, D.C. (1991): Implementation of an adaptive algorithm for Richardson's method. Linear Algebra Appl.154–156, 615–646

    Google Scholar 

  35. Smirnov, V.I., Lebedev, N.A. (1968): Functions of a complex variable: Constructive theory. M.I.T. Press, Cambridge, MA

    Google Scholar 

  36. Sonneveld, P. (1989): CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.10, 36–52

    Google Scholar 

  37. Trefethen, L.N. (1980): Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput.1, 82–102

    Google Scholar 

  38. Trefethen, L.N. (1981): Near-circularity of the error curve in complex Chebyshev approximation. J. Approx. Theory31, 344–367

    Google Scholar 

  39. Trefethen, L.N. (1990): Approximation theory and numerical linear algebra. In: Algorithms for approximation II, 336–360. Chapman & Hall, London

    Google Scholar 

  40. Varga, R.S. (1957): A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. J. Soc. Indust. Appl. Math.5, 39–46

    Google Scholar 

  41. Walsh, J.L. (1956): Interpolation and approximation by rational functions in the complex domain, 2nd edn. American Mathematical Society, Rhode Island

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starke, G., Varga, R.S. A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations. Numer. Math. 64, 213–240 (1993). https://doi.org/10.1007/BF01388688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01388688

Mathematics Subject Classification (1991)

Navigation