Inventiones mathematicae

, Volume 81, Issue 3, pp 539–554 | Cite as

Inequalities defining orbit spaces

  • Claudio Procesi
  • Gerald Schwarz


The orbit space of a representation of a compact Lie group has a natural semialgebraic structure. We describe explicit ways of finding the inequalities defining this structure, and we give some applications.


Orbit Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abud, M., Sartori, G.: The geometry of orbit-space and natural minima of Higgs potentials. Phys. Lett.104, 147–152 (1981)Google Scholar
  2. 2.
    Abud, M., Sartori, G.: The geometry of spontaneous symmetry breaking. Ann. Phys.150, 307–370 (1983)Google Scholar
  3. 3.
    Bierstone, E.: Lifting isotopies from orbit spaces. Topology14, 245–252 (1975)Google Scholar
  4. 4.
    Birkes, D.: Orbits of linear algebraic groups. Ann. Math.93, 459–475 (1971)Google Scholar
  5. 5.
    Bochnak, J., Efroymson, G.: Real algebraic geometry and the 17th Hilbert problem. Math. Ann.251, 213–241 (1980)Google Scholar
  6. 6.
    Chevalley, C.: Theory of Lie Groups. Princeton: Princeton University Press 1946Google Scholar
  7. 7.
    Dadok, J., Kac, V.: Polar representations. J. Algebra (To appear)Google Scholar
  8. 8.
    Demazure, M., Gabriel, P.: Groupes Algébriques. Amsterdam: North Holland 1970Google Scholar
  9. 9.
    Gatto, R., Sartori, G.: Gauge symmetry in supersymmetric gauge theories: Necessary and sufficient condition. Phys. Lett.118, 79–84 (1982)Google Scholar
  10. 10.
    Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic Press 1978Google Scholar
  11. 11.
    Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Algebraic Geometry. Lect. Notes Math.732, 233–243. New York: Springer 1979Google Scholar
  12. 12.
    Luna, D.: Slices étales. Bull. Soc. Math. Fr. Mém.33, 81–105 (1973)Google Scholar
  13. 13.
    Luna, D.: Sur certains opérations différentiables des groupes de Lie. Am. J. Math.97, 172–181 (1975)Google Scholar
  14. 14.
    Procesi, C.: Positive symmetric functions. Adv. Math.29, 219–225 (1978)Google Scholar
  15. 15.
    Sartori, G.: A theorem on orbit structures (strata) of compact linear Lie groups. J. Math. Phys.24, 765–768 (1983)Google Scholar
  16. 16.
    Schwarz, G.: Smooth functions invariant under the action of a compact Lie group. Topology14, 63–68 (1975)Google Scholar
  17. 17.
    Schwarz, G.: Lifting smooth homotopies of orbit spaces. Publ. Math. IHES51, 37–136 (1980)Google Scholar
  18. 18.
    Weyl, H.: The Classical Groups, 2nd ed. Princeton: Princeton University Press 1946Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Claudio Procesi
    • 1
  • Gerald Schwarz
    • 2
  1. 1.Dipartimento di Matematica, Istituto “Guido Castelnuovo”Università degli Studi di RomaRomaItaly
  2. 2.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations